52 resultados para Histidine-rich Protein-2
Resumo:
Voltage-gated sodium channels (VGSCs) play a crucial role in epilepsy. The expressions of different VGSCs subtypes are varied in diverse animal models of epilepsy that may reflect their multiple phenotypes or the complexity of the mechanisms of epilepsy. In a previous study, we reported that NaV1.1 and NaV1.3 were up-regulated in the hippocampus of the spontaneously epileptic rat (SER). In this study, we further analyzed both the expression and distribution of the typical VGSC subtypes NaV1.1, NaV1.2, NaV1.3 and NaV1.6 in the hippocampus and in the cortex of the temporal lobe of two genetic epileptic animal models: the SER and the tremor rat (TRM). The expressions of calmodulin (CaM) and calmodulin-dependent protein kinase II (CaMKII) were also analyzed with the purpose of assessing the effect of the CaM/CaMKII pathway in these two models of epilepsy. Increased expression of the four VGSC subtypes and CaM, accompanied by a decrease in CaMKII was observed in the hippocampus of both the SERs and the TRM rats. However, the changes observed in the expression of VGSC subtypes and CaM were decreased with an elevated CaMKII in the cortex of their temporal lobes. Double-labeled immunofluorescence data suggested that in SERs and TRM rats, the four subtypes of the VGSC proteins were present throughout the CA1, CA3 and dentate gyrus regions of the hippocampus and temporal lobe cortex and these were co-localized in neurons with CaM. These data represent the first evidence of abnormal changes in expression of four VGSC subtypes (NaV1.1, NaV1.2, NaV1.3 and NaV1.6) and CaM/CaMKII in the hippocampus and temporal lobe cortex of SERs and TRM rats. These changes may be involved in the generation of epileptiform activity and underlie the observed seizure phenotype in these rat models of genetic epilepsy.
Resumo:
Catalysts currently employed for the polymerization of ethylene have previously been found to deactivate in the presence of oxygen. It is, therefore, important that oxygen is removed from the ethylene feedstock prior to the polymerization. The Ag/gamma-Al2O3 catalyst exhibits excellent activity and selectivity toward oxygen reduction with hydrogen in the presence of ethylene. TAP vacuum pulse experiments have been utilised to understand the catalytic behaviour of the Ag/gamma-Al2O3 catalyst. TAP multi-pulse experiments have determined the types of active sites that are found on the Ag/gamma-Al2O3 catalyst, and the intrinsic activity of these sites. The lifetime of the reactive adsorbed oxygen intermediate has also been determined through TAP consecutive pulse experiments. Multi-pulse and consecutive pulse data have been combined with ethylene adsorption/desorption rate constants to provide an overview of the Ag/gamma-Al2O3 catalyst system.
Resumo:
The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\to$ N (also, CO $\to$ C $\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, C$_n$N ($n$=1, 3, 5), C$_n$N$^-$ ($n$=1, 3, 5), HC$_n$N ($n$=1, 3, 5, 7, 9), H$_2$CN and CH$_2$CN. The chemistry of many species is directly or indirectly affected by the photodissociation of N$_2$ and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N$_2$ and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.
Resumo:
A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MSbased strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidinecontaining peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario. © 2013 Biochemical Society.
Resumo:
The purpose of this study was to determine serum profiles of cytokines at a protein level and Creactive protein (CRP) during the development of postweaning multisystemic wasting syndrome (PMWS) in experimentally inoculated pigs. Levels of serum IFN-alpha, IL-6, IL-10, and CRP were examined for a 35-day period in 10 piglets experimentally infected with PCV2 at 3 weeks of age. Four of the infected piglets developed severe PMWS at 14 to 21 days post-infection (d.p.i.) and died prior to termination of the experiment. The remaining six PCV2-infected piglets experienced transient fever, but did not display overt clinical signs of PMWS and were considered as subclinically infected. A bioassay was used to detect IL-6 and ELISAs were used to detect IFN-alpha, IL-10, and CRP. There were no significant differences in cytokine or CRP expression from 0 to 7 d.p.i. between the PMWS-affected and the subclinically infected piglets. Levels of IL-10 and CRP were elevated from 10 and 14 d.p.i. respectively in the PMWS-affected piglets compared to the subclinically infected piglets. There were no significant differences in IFN-alpha and IL-6 expression between the PMWS-affected piglets and the subclinically infected piglets. The present study shows that elevated levels of serum CRP and IL-10 were associated with PCV2-infected piglets that subsequently developed severe PMWS. This may help to provide further insight into the immunoaetiogenesis of this syndrome.
Resumo:
Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from “mucogenic” strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease.
Resumo:
Background Neutrophils play a role in the pathogenesis of asthma, chronic obstructive pulmonary disease, and pulmonary infection. Impaired neutrophil phagocytosis predicts hospital-acquired infection. Despite this, remarkably few neutrophil-specific treatments exist.
Objectives We sought to identify novel pathways for the restoration of effective neutrophil phagocytosis and to activate such pathways effectively in neutrophils from patients with impaired neutrophil phagocytosis.
Methods Blood neutrophils were isolated from healthy volunteers and patients with impaired neutrophil function. In healthy neutrophils phagocytic impairment was induced experimentally by using β2-agonists. Inhibitors and activators of cyclic AMP (cAMP)-dependent pathways were used to assess the influence on neutrophil phagocytosis in vitro.
Results β2-Agonists and corticosteroids inhibited neutrophil phagocytosis. Impairment of neutrophil phagocytosis by β2-agonists was associated with significantly reduced RhoA activity. Inhibition of protein kinase A (PKA) restored phagocytosis and RhoA activity, suggesting that cAMP signals through PKA to drive phagocytic impairment. However, cAMP can signal through effectors other than PKA, such as exchange protein directly activated by cyclic AMP (EPAC). An EPAC-activating analog of cAMP (8CPT-2Me-cAMP) reversed neutrophil dysfunction induced by β2-agonists or corticosteroids but did not increase RhoA activity. 8CPT-2Me-cAMP reversed phagocytic impairment induced by Rho kinase inhibition but was ineffective in the presence of Rap-1 GTPase inhibitors. 8CPT-2Me-cAMP restored function to neutrophils from patients with known acquired impairment of neutrophil phagocytosis.
Conclusions EPAC activation consistently reverses clinical and experimental impairment of neutrophil phagocytosis. EPAC signals through Rap-1 and bypasses RhoA. EPAC activation represents a novel potential means by which to reverse impaired neutrophil phagocytosis.