49 resultados para High Lift Systems Design
Resumo:
To alleviate practical limitations in the design of mm-wave on-chip image-reject filters, systematic design methodologies are presented. Three low-order filters with high-selectivity and low-loss characteristics are designed and compared. Transmission zeroes are created by means of a quarter-wave transmission line (filter 1) and a series LC resonator (filters 2 and 3). Implemented on SiGe, the filters occupy 0.125, 0.064, and 0.079 mm2 chip area including pads. The measured transmission
losses across 81-86 GHz E-Band frequency range are 3.6-5.2 dB for filter 1, 3.1-4.7 dB for filter 2 and 3.6-5 dB for filter 3 where rejection levels at the image band are greater than 30 dB.
Resumo:
Gas fired generation currently plays an integral support role ensuring security of supply in power systems with high wind power penetrations due to its technical and economic attributes. However, the increase in variable wind power has affected the gas generation output profile and is pushing the boundaries of the design and operating envelope of gas infrastructure. This paper investigates the mutual dependence and interaction between electricity generation and gas systems through the first comprehensive joined-up, multi-vector energy system analysis for Ireland. Key findings reveal the high vulnerability of the Irish power system to outages on the Irish gas system. It has been shown that the economic operation of the power system can be severely impacted by gas infrastructure outages, resulting in an average system marginal price of up to €167/MWh from €67/MWh in the base case. It has also been shown that gas infrastructure outages pose problems for the location of power system reserve provision, with a 150% increase in provision across a power system transmission bottleneck. Wind forecast error was shown to be a significant cause for concern, resulting in large swings in gas demand requiring key gas infrastructure to operate at close to 100% capacity. These findings are thought to increase in prominence as the installation of wind capacity increases towards 2020, placing further stress on both power and gas systems to maintain security of supply.
Resumo:
We describe formulation and evaluation of novel dissolving polymeric microneedle (MN) arrays for the facilitated delivery of low molecular weight, high dose drugs. Ibuprofen sodium was used as the model here and was successfully formulated at approximately 50% w/w in the dry state using the copolymer poly(methylvinylether/maleic acid). These MNs were robust and effectively penetrated skin in vitro, dissolving rapidly to deliver the incorporated drug. The delivery of 1.5mg ibuprofen sodium, the theoretical mass of ibuprofen sodium contained within the dry MN alone, was vastly exceeded, indicating extensive delivery of the drug loaded into the baseplates. Indeed in in vitro transdermal delivery studies, approximately 33mg (90%) of the drug initially loaded into the arrays was delivered over 24h. Iontophoresis produced no meaningful increase in delivery. Biocompatibility studies and in vivo rat skin tolerance experiments raised no concerns. The blood plasma ibuprofen sodium concentrations achieved in rats (263μgml(-1) at the 24h time point) were approximately 20 times greater than the human therapeutic plasma level. By simplistic extrapolation of average weights from rats to humans, a MN patch design of no greater than 10cm(2) could cautiously be estimated to deliver therapeutically-relevant concentrations of ibuprofen sodium in humans. This work, therefore, represents a significant progression in exploitation of MN for successful transdermal delivery of a much wider range of drugs.
Resumo:
Densification is a key to greater throughput in cellular networks. The full potential of coordinated multipoint (CoMP) can be realized by massive multiple-input multiple-output (MIMO) systems, where each base station (BS) has very many antennas. However, the improved throughput comes at the price of more infrastructure; hardware cost and circuit power consumption scale linearly/affinely with the number of antennas. In this paper, we show that one can make the circuit power increase with only the square root of the number of antennas by circuit-aware system design. To this end, we derive achievable user rates for a system model with hardware imperfections and show how the level of imperfections can be gradually increased while maintaining high throughput. The connection between this scaling law and the circuit power consumption is established for different circuits at the BS.