176 resultados para Harmonics (Music)
Resumo:
The 1980s saw a wave of African films that aimed to represent, on both local and international screens, a sophisticated pre-colonial Africa, thus debunking notions of the continent as primitive. Toward this aim the films inscribed the conventions of oral performance within their visual styles, denying spectator identification with the protagonists and emphasising the presence of the narrator. However, some critics argued that these films exoticised Africa, while their use of oral performance’s distancing effect echoed the ‘scientific’ distance structured by the ethnographic film, in which African societies were represented as ‘the other’. Souleymane Cissé’s Yeelen exemplifies this tension, transposing into cinematic form oral storytelling techniques in the depiction of a power struggle within the covert cult of the komo, a Bambara initiation society unfamiliar to most non-Bambara viewers. This paper demonstrates how the film negotiates this tension via music, which interpellates the international spectator by eliciting a greater identification with the protagonists than that determined at a visual level, while encoding a verisimilitude to rituals that may otherwise be read as the superstitious practices of ‘the other’. In this way, music and image in Yeelen operate as parallel, though often overlapping, discourses, bridging the gap between the film’s culturally specific narrative and formal components, and its international spectators.
Resumo:
Laser-driven coherent extreme-ultraviolet (XUV) sources provide pulses lasting a few hundred attoseconds(1,2), enabling real-time access to dynamic changes of the electronic structure of matter(3,4), the fastest processes outside the atomic nucleus. These pulses, however, are typically rather weak. Exploiting the ultrahigh brilliance of accelerator-based XUV sources(5) and the unique time structure of their laser-based counterparts would open intriguing opportunities in ultrafast X-ray and high-field science, extending powerful nonlinear optical and pump-probe techniques towards X-ray frequencies, and paving the way towards unequalled radiation intensities. Relativistic laser-plasma interactions have been identified as a promising approach to achieve this goal(6-13). Recent experiments confirmed that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with unparalleled efficiency, and demonstrated the scalability of the generation technique towards hard X-rays(14-19). Here we show that the phases of the XUV harmonics emanating from the interaction processes are synchronized, and therefore enable attosecond temporal bunching. Along with the previous findings concerning energy conversion and recent advances in high-power laser technology, our experiment demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond.