53 resultados para HEAT-TREATMENT


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, ceria-yttria co-stabilized zirconia (CYSZ) free-standing coatings, deposited by air plasma spraying (APS), were isothermally annealed at 1315 °C in order to explore the effect of sintering on the microstructure and the mechanical properties (i.e., hardness and Young's modulus). To this aim, coating microstructure, before and after heat treatment, was analyzed using scanning electron microscopy, and image analysis was carried out in order to estimate porosity fraction. Moreover, Vickers microindentation and depth-sensing nanoindentation tests were performed in order to study the evolution of hardness and Young's modulus as a function of annealing time. The results showed that thermal aging of CYSZ coatings leads to noticeable microstructural modifications. Indeed, the healing of finer pores, interlamellar, and intralamellar microcracks was observed. In particular, the porosity fraction decreased from ~10 to ~5% after 50 h at 1315 °C. However, the X-ray diffraction analyses revealed that high phase stability was achieved, as no phase decomposition occurred after thermal aging. In turn, both the hardness and Young's modulus increased, in particular, the increase in stiffness (with respect to "as produced" samples) was equal to ~25%, whereas the hardness increased to up to ~60%. © 2010 Springer Science+Business Media, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron microscopy (SEM). The embedded particles were found to get pressed into the matrix which helps resisting further wearing process for composite samples. However, random orientation of microcuts and microfallow were seen for ENC sample but more uniform wearing was observed for EN sample. The composite coating with low content of SiC was worn minimum. Early penetration into the substrate was seen for samples with higher SiC content. Microhardness was improved after heat treatment for all the samples containing various SiC content. Under dry sliding condition, inclusion of particles in the matrix did not improve the wearing resistance performance in as-deposited state. The wearing worsened as the content of the particles increased generally. However, on heat treatment, the composite coatings exhibited improved wear resistance and the best result was obtained from the one with low particle contents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Robust, bilayer heterojunction photodiodes of TiO2-WO3 were prepared successfully by a simple, low-cost powder pressing technique followed by heat-treatment. Exclusive photoirradiation of the TiO2 side of the photodiode resulted in a rapid colour change (dark blue) on the WO3 surface as a result of reduction of W6+ to W5+ (confirmed by X-ray photoelectron spectroscopy). This colour was long lived and shown to be stable in a dry environment in air for several hours. A similar photoirradiation experiment in the presence of a mask showed that charge transfer across the heterojunction occurred approximately normal to the TiO2 surface, with little smearing out of the mask image. As a result of the highly efficient vectorial charge separation, the photodiodes showed a tremendous increase in photocatalytic activity for the degradation of stearic acid, compared to wafers of the respective individual materials when tested separately.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface behaviour is of paramount importance as failure and degradation tend to initiate from the surface. Electroless composite coating (NiP/SiC) was developed using SiC as reinforcing particles. As heat treatment plays a vital role in electroless nickel coating owing to the changes in microstructure, phase structure and mechanical properties, an insight at the interface changes in chemistry and micromechanical behaviour was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and microindentation techniques. Corrosion performance was analysed using electrochemical impedance spectroscopy (EIS). Absence of zinc and migration of copper at the interface was detected. Brittleness and microcracks was seen long the interface when indenting at load of 500 gf (Vickers). Corrosion performance is weaker than particles free coating. However, a thin blanket of NiP could enhance the resistance to corrosive medium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of heat treatment. The microhardness is increased on incorporation of SiC in Ni-P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature. Overall, the composite coating (ENC) was found to be superior as compared to particles free (EN) coating in both as-deposited and heat-treated conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.