73 resultados para H-ras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to assess qualitatively the ejecta geometry of stripped-envelope core-collapse supernovae (SNe), we investigate 98 late-time spectra of 39 objects, many of them previously unpublished. We perform a Gauss-fitting of the [O ] ??6300, 6364 feature in all spectra, with the position, full width at half maximum and intensity of the ?6300 Gaussian as free parameters, and the ?6364 Gaussian added appropriately to account for the doublet nature of the [O ] feature. On the basis of the best-fitting parameters, the objects are organized into morphological classes, and we conclude that at least half of all Type Ib/c SNe must be aspherical. Bipolar jet models do not seem to be universally applicable, as we find too few symmetric double-peaked [O ] profiles. In some objects, the [O ] line exhibits a variety of shifted secondary peaks or shoulders, interpreted as blobs of matter ejected at high velocity and possibly accompanied by neutron-star kicks to assure momentum conservation. At phases earlier than ~200 d, a systematic blueshift of the [O ] ??6300, 6364 line centroids can be discerned. Residual opacity provides the most convincing explanation of this phenomenon, photons emitted on the rear side of the SN being scattered or absorbed on their way through the ejecta. Once modified to account for the doublet nature of the oxygen feature, the profile of Mg i] ?4571 at sufficiently late phases generally resembles that of [O ] ??6300, 6364, suggesting negligible contamination from other lines and confirming that O and Mg are similarly distributed within the ejecta. © 2009 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a 133-ks XMM-Newton observation of the Seyfert 1 galaxy Markarian 335. The 0.4-12 keV spectrum contains an underlying power-law continuum, a soft excess below 2 keV, and a double-peaked iron emission feature in the 6-7 keV range. We investigate the possibility that the double-peaked emission might represent the characteristic signature of the accretion disc. Detailed investigations show that a moderately broad accretion disc line is most likely present, but that the peaks may be due to narrower components from more distant material. The peaks at 6.4 and 7 keV can be identified, respectively, with the molecular torus in active galactic nucleus unification schemes, and very highly ionized, optically thin gas filling the torus. The X-ray variability spectra on both long (~100 ks) and short (~1 ks) time-scales do not support the recent suggestion that the soft excess is an artefact of variable, moderately ionized absorption. © 2007 The Authors. Journal compilation © 2007 RAS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vesicle trafficking plays an important role in cell division, establishment of cell polarity, and translation of environmental cues to developmental responses. However, the molecular mechanisms regulating vesicle trafficking remain poorly understood. Here, we report that the evolutionarily conserved caspase-related protease separase (EXTRA SPINDLE POLES [ESP]) is required for the establishment of cell polarity and cytokinesis in Arabidopsis thaliana. At the cellular level, separase colocalizes with microtubules and RabA2a (for RAS GENES FROM RAT BRAINA2a) GTPase-positive structures. Separase facilitates polar targeting of the auxin efflux carrier PIN-FORMED2 (PIN2) to the rootward side of the root cortex cells. Plants with the radially swollen4 (rsw4) allele with compromised separase activity, in addition to mitotic failure, display isotropic cell growth, perturbation of auxin gradient formation, slower gravitropic response in roots, and cytokinetic failure. Measurements of the dynamics of vesicle markers on the cell plate revealed an overall reduction of the delivery rates of KNOLLE and RabA2a GTPase in separase-deficient roots. Furthermore, dissociation of the clathrin light chain, a protein that plays major role in the formation of coated vesicles, was slower in rsw4 than in the control. Our results demonstrate that separase is a key regulator of vesicle trafficking, which is indispensable for cytokinesis and the establishment of cell polarity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RUNX3 aberrations play a pivotal role in the oncogenesis of breast, gastric, colon, skin and lung tissues. The aim of this study was to characterize further the expression of RUNX3 in lung cancers. To achieve this, a lung cancer tissue microarray (TMA), frozen lung cancer tissues and lung cell lines were examined for RUNX3 expression by immunohistochemistry, while the TMA was also examined for EGFR and p53 expression. RUNX3 promoter methylation status, and EGFR and KRAS mutation status were also investigated. Inactivation of RUNX3 was observed in 70% of the adenocarcinoma samples, and this was associated with promoter hypermethylation but not biased to EGFR/KRAS mutations. Our results suggest a central role of RUNX3 downregulation in pulmonary adenocarcinoma, which may not be dependent of other established cancer-causing pathways and may have important diagnostic and screening implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding migration of cells has many implications in human physiology; some examples include developmental biology, healing, immune responses and tissue remodeling. On the other hand, invasive migration by tumor cells is pathological and is a major cause of mortality amongst cancer sufferers. Cell migration assays have been widely used to quantify potentially metastatic genes. In recent years, the use of RNAi has significantly increased the tools available in cell migration research due to its specific gene targeting for knockdown. The inability to ensure 100% transfection/transduction efficiency reduces the sensitivity of cell migration assays because cells not successfully transfected/transduced with the RNAi are also included in the calculations. This study introduces a different experimental setup mathematically expressed in our named normalized relative infected cell count (N-RICC) that analyses cell migration assays by co-expressing retrovirally transduced shRNA with fluorescence tags from a single vector. Vectors transduced into cells are visible under fluorescence, thus alleviating the problems involved with transduction efficiency by individually identifying cells with targeted genes. Designed shRNAs were targeted against a list of potentially metastatic genes in a highly migratory breast cancer cell line model, MDA-MB-231. We have successfully applied N-RICC analysis to show greater sensitivity of integrin alpha5 (ITGA5) and Ras homologue A (RhoA) in cell metastasis over conventional methods in scratch-wound assays and migration chambers assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A downstream target of the Wnt pathway, neurone glial-related cell adhesion molecule (Nr-CAM) has recently been implicated in human cancer development. However, its role in colorectal cancer (CRC) pathobiology and clinical relevance remains unknown. In this study, we examined the clinical significance of Nr-CAM protein expression in a retrospective series of 428 CRCs using immunohistochemistry and tissue microarrays. Cox proportional hazards regression was used to calculate hazard ratios (HR) of mortality according to various clinicopathological features and molecular markers. All CRC samples were immunoreactive for Nr-CAM protein expression, compared to 10 / 245 (4%) matched normal tissue (P <0.0001). Of 428 CRC samples, 97 (23%) showed Nr-CAM overexpression, which was significantly associated with nodal (P = 0.012) and distant (P = 0.039) metastasis, but not with extent of local invasion or tumor size. Additionally, Nr-CAM overexpression was associated with vascular invasion (P = 0.0029), p53 expression (P = 0.036), and peritoneal metastasis at diagnosis (P = 0.013). In a multivariate model adjusted for other clinicopathological predictors of survival, Nr-CAM overexpression correlated with a significant increase in disease-specific (HR 1.66; 95% confidence interval 1.11-2.47; P = 0.014) and overall mortality (HR 1.57; 95% confidence interval 1.07-2.30; P = 0.023) in advanced but not early stage disease. Notably, 5-fluorouracil-based chemotherapy conferred significant survival benefit to patients with tumors negative for Nr-CAM overexpression but not to those with Nr-CAM overexpressed tumors. In conclusion, Nr-CAM protein expression is upregulated in CRC tissues. Nr-CAM overexpression is an independent marker of poor prognosis among advanced CRC patients, and is a possible predictive marker for non-beneficence to 5-fluorouracil- based chemotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Erythropoiesis is maintained by the hormone erythropoietin (Epo) binding to its cognate receptor (EpoR) on erythroid progenitor cells. The Epo-EpoR interaction initiates a signal transduction process that regulates the survival, growth and differentiation of these cells. Originally perceived as highly lineage-restricted, Epo is now recognised to have pleiotropic effects extending beyond the maintenance of red cell mass. Functional interactions between Epo and EpoR have been demonstrated in numerous cells and tissues. EpoR expression on neoplastic cells leads to concern that recombinant human erythropoietin, used to treat anaemia in cancer patients, may augment tumour growth. Here we demonstrate that EPO, at pharmacological concentrations, can activate three major signalling cascades, viz. the Jak2/STAT5, Ras/ERK and PI3K/Akt pathways in non-small cell lung carcinoma (NSCLC) cell lines. EpoR synthesis is normally under the control of GATA-1, but NSCLC cells exhibit decreased GATA-1 levels compared to GATA-2, -3 and -6, suggesting that GATA-1 is not essential for EpoR production. The increased Epo-induced signalling was not associated with a growth advantage for the NSCLC cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engineering plasmonic nanomaterials or nanostructures towards ultrasensitive biosensing for disease markers or pathogens is of high importance. Here we demonstrate a systematic approach to tailor effective plasmonic nanorod arrays by combining both comprehensive numerical discrete dipole approximations (DDA) simulation and transmission spectroscopy experiments. The results indicate that 200×50 nm nanorod arrays with 300×500 nm period provide the highest FOM of 2.4 and a sensitivity of 310 nm/RIU. Furthermore, we demonstrate the use of nanorod arrays for the detection of single nucleotide polymorphism in codon 12 of the K-ras gene that are frequently occurring in early stages of colon cancer, with a sensitivity down to 10 nM in the presence of 100-fold higher concentration of the homozygous genotypes. Our work shows significant potential of nanorod arrays towards point-of-care applications in diagnosis and clinical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC.

METHODS: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations.

RESULTS: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy.

CONCLUSIONS: High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite element (FE) simulations provides an inexpensive alternative for material testingof new metal alloys. Carrying out experimental testing is expensive. Nanoindentation is particularly costly due to the equipment needed to work on such a scale. FE simulations provide an inexpensive means of material testing if accurately carried out. This paper will demonstrate the applicability and accuracy of using FE modelling for basic material tests and will propose that the viscoplastic model may be used for nanoindentation testing. The simulations will test the Young’s modulus of materials during analysis when an Abaqus VUMAT is used. The viscoplastic model is incorporated into a subroutine and is tested at the macroscopic scale against previous published results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Targeting angiogenesis through inhibition of the vascular endothelial growth factor (VEGF) pathway has been successful in the treatment of late stage colorectal cancer. However, not all patients benefit from inhibition of VEGF. Ras status is a powerful biomarker for response to anti-epidermal growth factor receptor therapy; however, an appropriate biomarker for response to anti-VEGF therapy is yet to be identified. VEGF and its receptors, FLT1 and KDR, play a crucial role in colon cancer progression; individually, these factors have been shown to be prognostic in colon cancer; however, expression of none of these factors alone was predictive of tumor response to anti-VEGF therapy. In the present study, we analyzed the expression levels of VEGFA, FLT1, and KDR in two independent colon cancer datasets and found that high expression levels of all three factors afforded a very poor prognosis. The observation was further confirmed in another independent colon cancer dataset, wherein high levels of expression of this three-gene signature was predictive of poor prognosis in patients with proficient mismatch repair a wild-type KRas status, or mutant p53 status. Most importantly, this signature also predicted tumor response to bevacizumab, an antibody targeting VEGFA, in a cohort of bevacizumab-treated patients. Since bevacizumab has been proven to be an important drug in the treatment of advanced stage colon cancer, our results suggest that the three-gene signature approach is valuable in terms of its prognostic value, and that it should be further evaluated in a prospective clinical trial to investigate its predictive value to anti-VEGF treatment.