54 resultados para Graph mining
Resumo:
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
Resumo:
Realising memory intensive applications such as image and video processing on FPGA requires creation of complex, multi-level memory hierarchies to achieve real-time performance; however commerical High Level Synthesis tools are unable to automatically derive such structures and hence are unable to meet the demanding bandwidth and capacity constraints of these applications. Current approaches to solving this problem can only derive either single-level memory structures or very deep, highly inefficient hierarchies, leading in either case to one or more of high implementation cost and low performance. This paper presents an enhancement to an existing MC-HLS synthesis approach which solves this problem; it exploits and eliminates data duplication at multiple levels levels of the generated hierarchy, leading to a reduction in the number of levels and ultimately higher performance, lower cost implementations. When applied to synthesis of C-based Motion Estimation, Matrix Multiplication and Sobel Edge Detection applications, this enables reductions in Block RAM and Look Up Table (LUT) cost of up to 25%, whilst simultaneously increasing throughput.
Resumo:
Association rule mining is an indispensable tool for discovering
insights from large databases and data warehouses.
The data in a warehouse being multi-dimensional, it is often
useful to mine rules over subsets of data defined by selections
over the dimensions. Such interactive rule mining
over multi-dimensional query windows is difficult since rule
mining is computationally expensive. Current methods using
pre-computation of frequent itemsets require counting
of some itemsets by revisiting the transaction database at
query time, which is very expensive. We develop a method
(RMW) that identifies the minimal set of itemsets to compute
and store for each cell, so that rule mining over any
query window may be performed without going back to the
transaction database. We give formal proofs that the set of
itemsets chosen by RMW is sufficient to answer any query
and also prove that it is the optimal set to be computed
for 1 dimensional queries. We demonstrate through an extensive
empirical evaluation that RMW achieves extremely
fast query response time compared to existing methods, with
only moderate overhead in pre-computation and storage
Resumo:
We address the problem of mining interesting phrases from subsets of a text corpus where the subset is specified using a set of features such as keywords that form a query. Previous algorithms for the problem have proposed solutions that involve sifting through a phrase dictionary based index or a document-based index where the solution is linear in either the phrase dictionary size or the size of the document subset. We propose the usage of an independence assumption between query keywords given the top correlated phrases, wherein the pre-processing could be reduced to discovering phrases from among the top phrases per each feature in the query. We then outline an indexing mechanism where per-keyword phrase lists are stored either in disk or memory, so that popular aggregation algorithms such as No Random Access and Sort-merge Join may be adapted to do the scoring at real-time to identify the top interesting phrases. Though such an approach is expected to be approximate, we empirically illustrate that very high accuracies (of over 90%) are achieved against the results of exact algorithms. Due to the simplified list-aggregation, we are also able to provide response times that are orders of magnitude better than state-of-the-art algorithms. Interestingly, our disk-based approach outperforms the in-memory baselines by up to hundred times and sometimes more, confirming the superiority of the proposed method.
Resumo:
Seafloor massive sulfides (SMS) contain commercially viable quantities of high grade ores, making them attractive prospect sites for marine mining. SMS deposits may also contain hydrothermal vent ecosystems populated by high conservation value vent-endemic species. Responsible environmental management of these resources is best achieved by the adoption of a precautionary approach. Part of this precautionary approach involves the Environmental Impact Assessment (EIA) of exploration and exploitative activities at SMS deposits. The VentBase 2012 workshop provided a forum for stakeholders and scientists to discuss issues surrounding SMS exploration and exploitation. This forum recognised the requirement for a primer which would relate concepts underpinning EIA at SMS deposits. The purpose of this primer is to inform policy makers about EIA at SMS deposits in order to aid management decisions. The primer offers a basic introduction to SMS deposits and their associated ecology, and the basic requirements for EIA at SMS deposits; including initial data and information scoping, environmental survey, and ecological risk assessment. © 2013 Elsevier Ltd.
Resumo:
Mining seafloor massive sulfides for metals is an emergent industry faced with environmental management challenges. These revolve largely around limits to our current understanding of biological variability in marine systems, a challenge common to all marine environmental management. VentBase was established as a forum where academic, commercial, governmental, and non-governmental stakeholders can develop a consensus regarding the management of exploitative activities in the deep-sea. Participants advocate a precautionary approach with the incorporation of lessons learned from coastal studies. This workshop report from VentBase encourages the standardization of sampling methodologies for deep-sea environmental impact assessment. VentBase stresses the need for the collation of spatial data and importance of datasets amenable to robust statistical analyses. VentBase supports the identification of set-asides to prevent the local extirpation of vent-endemic communities and for the post-extraction recolonization of mine sites. © 2013.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.