63 resultados para Geometry of numbers
Resumo:
The spectrum of collective excitations of oblate toroidal condensates within the Bogoliubov approximation was studied, and the dynamical stability of ring currents around the torus explored. The transition from spheroidal to toroidal geometry of the trap displaced the energy levels into narrow bands. A simple, but accurate, formula was detailed for the lowest angular acoustic modes of excitation, and the splitting energy when a background current is present.
Resumo:
Controlling coherent electromagnetic interactions in molecular systems is a problem of both fundamental interest and important applicative potential in the development of photonic and opto-electronic devices. The strength of these interactions determines both the absorption and emission properties of molecules coupled to nanostructures, effectively governing the optical properties of such a composite metamaterial. Here we report on the observation of strong coupling between a plasmon supported by an assembly of oriented gold nanorods (ANR) and a molecular exciton. We show that the coupling is easily engineered and is deterministic as both spatial and spectral overlap between the plasmonic structure and molecular aggregates are controlled. We think that these results in conjunction with the flexible geometry of the ANR are of potential significance to the development of plasmonic molecular devices.
Resumo:
Introduction: The quadrifilar helix antenna (QHA) is used widely for terrestrial [1] and space communication systems [2], where it is necessary to generate a circularly polarised cardioid-shaped radiation pattern with a high front-to-back ratio and low cross-polarisation. The radiating structure comprises four helical conductors which are excited in phase quadrature at the feed point, which is usually located at the centre of the top radials. The physical size of the quadrifilar antenna can be reduced by dielectric loading [3] or by meandering the printed linear elements [4]. However, in the former arrangement dielectric absorption reduces the radiation efficiency of the antenna, and the latter technique is not suitable for constructing free standing wire structures, which are normally used for spacecraft payloads in the VHF and UHF bands [2]. This Letter shows that a significant reduction in the axial length of a 1/2 turn half-wavelength QHA can be achieved by modifying the geometry of the helices in the region around the midpoint where a current null exists. Simulated and experimental results at L band are used to show that a size reduction of up to 15% is possible without significantly degrading the pattern shape and the bandwidth.
Resumo:
This paper analyses multivariate statistical techniques for identifying and isolating abnormal process behaviour. These techniques include contribution charts and variable reconstructions that relate to the application of principal component analysis (PCA). The analysis reveals firstly that contribution charts produce variable contributions which are linearly dependent and may lead to an incorrect diagnosis, if the number of principal components retained is close to the number of recorded process variables. The analysis secondly yields that variable reconstruction affects the geometry of the PCA decomposition. The paper further introduces an improved variable reconstruction method for identifying multiple sensor and process faults and for isolating their influence upon the recorded process variables. It is shown that this can accommodate the effect of reconstruction, i.e. changes in the covariance matrix of the sensor readings and correctly re-defining the PCA-based monitoring statistics and their confidence limits. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The motivation for this paper is to present procedures for automatically creating idealised finite element models from the 3D CAD solid geometry of a component. The procedures produce an accurate and efficient analysis model with little effort on the part of the user. The technique is applicable to thin walled components with local complex features and automatically creates analysis models where 3D elements representing the complex regions in the component are embedded in an efficient shell mesh representing the mid-faces of the thin sheet regions. As the resulting models contain elements of more than one dimension, they are referred to as mixed dimensional models. Although these models are computationally more expensive than some of the idealisation techniques currently employed in industry, they do allow the structural behaviour of the model to be analysed more accurately, which is essential if appropriate design decisions are to be made. Also, using these procedures, analysis models can be created automatically whereas the current idealisation techniques are mostly manual, have long preparation times, and are based on engineering judgement. In the paper the idealisation approach is first applied to 2D models that are used to approximate axisymmetric components for analysis. For these models 2D elements representing the complex regions are embedded in a 1D mesh representing the midline of the cross section of the thin sheet regions. Also discussed is the coupling, which is necessary to link the elements of different dimensionality together. Analysis results from a 3D mixed dimensional model created using the techniques in this paper are compared to those from a stiffened shell model and a 3D solid model to demonstrate the improved accuracy of the new approach. At the end of the paper a quantitative analysis of the reduction in computational cost due to shell meshing thin sheet regions demonstrates that the reduction in degrees of freedom is proportional to the square of the aspect ratio of the region, and for long slender solids, the reduction can be proportional to the aspect ratio of the region if appropriate meshing algorithms are used.
Resumo:
Baited cameras are often used for abundance estimation wherever alternative techniques are precluded, e.g. in abyssal systems and areas such as reefs. This method has thus far used models of the arrival process that are deterministic and, therefore, permit no estimate of precision.
Furthermore, errors due to multiple counting of fish and missing those not seen by the camera have restricted the technique to using only the time of first arrival, leaving a lot of data redundant. Here, we reformulate the arrival process using a stochastic model, which allows the precision of abundance
estimates to be quantified. Assuming a non-gregarious, cross-current-scavenging fish, we show that prediction of abundance from first arrival time is extremely uncertain. Using example data, we show
that simple regression-based prediction from the initial (rising) slope of numbers at the bait gives good precision, accepting certain assumptions. The most precise abundance estimates were obtained
by including the declining phase of the time series, using a simple model of departures, and taking account of scavengers beyond the camera’s view, using a hidden Markov model.
Resumo:
We present a first-principles molecular dynamics study of an excess electron in condensed phase models of solvated DNA bases. Calculations on increasingly large microsolvated clusters taken from liquid phase simulations show that adiabatic electron affinities increase systematically upon solvation, as for optimized gas-phase geometries. Dynamical simulations after vertical attachment indicate that the excess electron, which is initially found delocalized, localizes around the nucleobases within a 15 fs time scale. This transition requires small rearrangements in the geometry of the bases.
Resumo:
Cucurbit[n]urils (CB[n]) are macrocyclic host molecules with subnanometer dimensions capable of binding to gold surfaces. Aggregation of gold nanoparticles with CB[n] produces a repeatable, fixed, and rigid interparticle separation of 0.9 nm, and thus such assemblies possess distinct and exquisitely sensitive plasmonics. Understanding the plasmonic evolution is key to their use as powerful SERS substrates. Furthermore, this unique spatial control permits fast nanoscale probing of the plasmonics of the aggregates "glued" together by CBs within different kinetic regimes using simultaneous extinction and SERS measurements. The kinetic rates determine the topology of the aggregates including the constituent structural motifs and allow the identification of discrete plasmon modes which are attributed to disordered chains of increasing lengths by theoretical simulations. The CBs directly report the near-field strength of the nanojunctions they create via their own SERS, allowing calibration of the enhancement. Owing to the unique barrel-shaped geometry of CB[n] and their ability to bind "guest" molecules, the aggregates afford a new type of in situ self-calibrated and reliable SERS substrate where molecules can be selectively trapped by the CB[n] and exposed to the nanojunction plasmonic field. Using this concept, a powerful molecular-recognition-based SERS assay is demonstrated by selective cucurbit[n]uril host-guest complexation.
Resumo:
This paper shows that current multivariate statistical monitoring technology may not detect incipient changes in the variable covariance structure nor changes in the geometry of the underlying variable decomposition. To overcome these deficiencies, the local approach is incorporated into the multivariate statistical monitoring framework to define two new univariate statistics for fault detection. Fault isolation is achieved by constructing a fault diagnosis chart which reveals changes in the covariance structure resulting from the presence of a fault. A theoretical analysis is presented and the proposed monitoring approach is exemplified using application studies involving recorded data from two complex industrial processes. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
SOMMARIO – Si presenta un macro modello di tipo reticolare in grado di riprodurre il comportamento in presenza di taglio e momento di nodi esterni trave-colonna di telai in calcestruzzo fibrorinforzato con fibre di acciaio
uncinato ed ordinario. Il caricamento del sistema è di tipo monotono come nel caso dell’analisi di pushover. Il modello considera la presenza di armature orizzontali e verticali della regione nodale e tiene in conto delle modalità
di rottura legate allo snervamento delle barre e allo schiacciamento delle regioni compresse in regime di sforzi pluriassiali. Il modello include le deformazioni flessionali della trave e della colonna in presenza di sforzo normale costante e restituisce la risposta del sistema colonna-nodo-trave (sub-assembralggio) tramite le curve carico-freccia all’estremità della semitrave. Per i singoli costituenti (trave, colonna e nodo) si è considerata la prima fessurazione, lo snervamento e lo schiacciamento delle regioni compresse e si sono fornite precise indicazioni sulla sequenza degli eventi che come è noto sono di fondamentale importanza per lo sviluppo di un progetto plastico che rispetti la gerarchia delle resistenze. Con l’uso del modello il controllo della gerarchia delle resistenze avviene a livello sezionale (lo snervamento delle barre deve avvenire prima dello schiacciamento delle regioni compresse) o di macro elemento (nella regione nodale lo snervamento delle staffe precede la crisi dei puntoni) e dell’intero elemento
sub-assemblaggio trave debole, colonna forte e nodo sovraresistente.
La risposta ottenuta con i modello proposto è in buon accordo con le risposte sperimentali disponibili in letteratura (almeno in termini di resistenza del sub-assemblaggio). Il modello è stato ulteriormente validato con analisi
numeriche agli elementi finiti condotte con il codice ATENA-2D. Le analisi numeriche sono state condotte utilizzando per il calcestruzzo fibroso adeguate leggi costitutive proposte dagli autori ed in grado di cogliere gli effetti
di softening e di resistenza residua a trazione legati alla presenza di fibre. Ulteriori sviluppi del modello saranno indirizzati a includere gli effetti di sfilamento delle barre d’armatura della trave e del conseguente degrado delle
tensioni d’aderenza per effetto di carichi monotonici e ciclici.
SUMMARY – A softened strut-and-tie macro model able to reproduce the flexural behavior of external beam-tocolumn joints with the presence of horizontal and vertical steel bars, including softening of compressed struts and yielding of main and secondary steel bars, is presented, to be used for the pushover analysis. The model proposed is able to calculate also the flexural response of fibrous reinforced concrete (FRC) beam-to-column sub-assemblages in term of a multilinear load-deflection curves. The model is able to take into account of the tensile behavior of main bars embedded in the surrounding concrete and of the softening of the compressed strut, the arrangement and percentage of the steel bars, the percentage and the geometry of steel fibers. First cracking, yielding of main steel and crushing of concrete were identified to determine the corresponding loads and displacement and to plot the simplified monotonic load-deflection curves of the sub-assemblages subjected in the column to constant vertical
load and at the tip of the beam to monotonically increasing lateral force. Through these load-delfection curves the component (beam, joint and column) that first collapse can be recognized and the capacity design can be verified.
The experimental results available in the literature are compared with the results obtained through the proposed model. Further, a validation of the proposed model is numerically made by using a non linear finite element program (ATENA-2D) able to analyze the flexural behavior of sub-assemblages.
Resumo:
Using device-to-device communications as an underlay for cellular communications will provide an exciting opportunity to increase network capacity as well as improving spectral efficiency. The unique geometry of device-to-device links, where user equipment is often held or carried at low elevation and in close proximity to the human body, will mean that they are particularly susceptible to shadowing events caused not only by the local environment but also by the user's body. In this paper, the shadowed κ - μ fading model is proposed, which is capable of characterizing shadowed fading in wireless communication channels. In this model, the statistics of the received signal are manifested by the clustering of multipath components. Within each of these clusters, a dominant signal component with arbitrary power may exist. The resultant dominant signal component, which is formed by the phasor addition of these leading contributions, is assumed to follow a Nakagami- m distribution. The probability density function, moments, and the moment-generating function are also derived. The new model is then applied to device-to-device links operating at 868 MHz in an outdoor urban environment. It was found that shadowing of the resultant dominant component can vary significantly depending upon the position of the user equipment relative to the body and the link geometry. Overall, the shadowed κ - μ fading model is shown to provide a good fit to the field data as well as providing a useful insight into the characteristics of the received signal.
Resumo:
This study presents the design of a thin electromagnetic absorber which exhibits radar backscatter suppression that is independent of the wave polarisation at large incidence angles. The structure consists of a metal backed printed frequency selective surface (FSS), with resistors placed across narrow gaps inserted in the middle of each of the four sides of the conductor loops. The geometry of the periodic array and the value of the vertical and horizontal resistor pairs are carefully chosen to present a real impedance of 377 Ω at the centre operating frequency for both TE and TM polarised waves. Angular sensitivity and reflectivity bandwidth have been investigated for FSS absorber designs with thicknesses of 1, 2 and 3 mm. Each of the three structures was optimised to work at a centre frequency of 10 GHz and an incident angle of 45°. The design methodology is verified by measuring the radar backscatter suppression from a 3 mm (l / 10) thick screen in the frequency range 8–12 GHz. The absorber construction was simplified by filling the four metal gaps in each unit cell with shielding paint, and selecting the ink thickness to give the two required surface resistance values.
Resumo:
This paper aims to offer new theoretical and empirical insights into power dynamics in an industrial supplier workshop setting. Theoretically, it advances an institutional perspective on supplier workshops as an important venue in managing, preserving and instituting industrial market power. Based on a detailed ethnographic analysis of an industrial workshop setting, this article investigates the institutional maintenance work of Retail Co. in preserving the power dynamics of market dominance in business exchanges and market structures. Our findings revealed three previously unreported insights into the subtle, but nonetheless pervasive power from institutional maintenance work in an industrial workshop setting. First, the institutional workshop work comprised a cultural performance; constituting socialization practice through a performance game, the power of numbers in field comprehension and an award ceremony. Second, the institutional workshop work mobilized projective agency, stipulating, directing and appealing for the instituting of distinct market rules and collective identities. Finally, the institutional workshop work increases supplier docility and utility via the regulative technologies-of-the-self to enhance business planning, operations and market decision-making practice, without necessarily being seen to be disciplinarian.
Resumo:
Using the Otto geometry of attenuated total reflection (prism-air gap-sample), front illuminated PtSi/Si Schottky barrier detectors are shown to exhibit enhanced photocurrent at surface plasmon resonance in the near infrared region. Correlation of the measured photocurrent with the calculated transmittance of light into the Si substate is demonstrated. The transmittance, which is due to surface plasmon re-radiation, is the optical parameter of principal importance in photosignal generation since the photon energies used here are greater than the silicon intrinsic bandgap. The results presented here indicate clearly the important features in optimizing surface plasmon enhancement in photodetection both above and below the silicon absorption edge.