125 resultados para GAS-PHASE CATALYSIS
Resumo:
A novel configuration for the in situ control of the catalytic activity of a polycrystalline Pt catalyst supported on a mixed ionic electronic conducting (MIEC) substrate is investigated. The modification of the catalytic activity is achieved by inducing the reverse spillover of oxygen promoting species from the support onto the catalyst surface, thus modifying the chemisorptive bond energy of the gas phase adsorbed reactants. This phenomenon is known as Electrochemical Promotion of Catalysis (EPOC). In this work we investigate the use of a wireless system that takes advantage of the mixed ionic electronic conductivity of the catalyst support (internally short-circuiting the system) in a dual chamber reactor. In this wireless configuration, the reaction takes place in one chamber of the membrane reactor while introduction of the promoting species is achieved by the use of an appropriate sweep gas (and therefore control of the oxygen chemical potential difference across the membrane) on the other chamber. Experimental results have shown that the catalytic rate can be enhanced by using an oxygen sweep, while a hydrogen sweep can reverse the changes. Total rate enhancement ratios of up to 3.5 were measured. © 2008 Elsevier B.V. All rights reserved.
Resumo:
We present ultraviolet and optical spectra of DI 1388, a young star in the Magellanic Bridge, a region of gas between the Small and Large Magellanic Clouds. The data have signal-to-noise ratios of 20-45 and a spectral resolution of 6.5 km s-1. Interstellar absorption by the Magellanic Bridge at vLSR~200 km s-1 is visible in the lines of C I, C II, C II*, C IV, N I, O I, Al II, Si II, Si III, Si IV, S II, Ca II, Fe II, and Ni II. The relative gas-phase abundances of C II, N I, O I, Al II, Si II, Fe II, and Ni II with respect to S II are similar to those found in Galactic halo clouds, despite a significantly lower metallicity in the Magellanic Bridge. The higher ionization species in the cloud have a column density ratio N(C+3)/N(Si+3)~1.9, similar to that inferred for collisionally ionized Galactic cloud interfaces at temperatures ~105 K. We identify substructure in the stronger interstellar lines, with a broad component (FWHM~20 km s-1) at ~179 km s-1 and a sharp component (FWHM~11 km s-1) at 198 km s-1. The abundance analysis for these clouds indicates that the feature at 198 km s-1 consists of a low electron density, mainly neutral gas that may be associated with an interface responsible for the highly ionized gas. The 179 km s-1 cloud consists of warmer, lower density gas that is partially ionized.
Resumo:
We compare existing high spectral resolution (R = lambda/Deltalambda similar to 40 000) Ca II Kobservations (lambda(air) = 3933.66 Angstrom) towards 88 mainly B-type stars, and new observations taken using the Intermediate dispersion Spectrograph and Imaging System (ISIS) on the William Herschel Telescope at R similar to 10 000 towards three stars taken from the Palomar-Green Survey, with 21-cm HI emission-line profiles, in order to search for optical absorption towards known intermediate- and high-velocity cloud complexes. Given certain assumptions, limits to the gas phase abundance of Ca II are estimated for the cloud components. We use the data to derive the following distances from the Galactic plane (z). (i) Tentative lower z-height limits of 2800 and 4100 pc towards complex C using lack of absorption in the spectra of HD341617 and PG 0855 + 294, respectively. (ii) A weak lower z-height of 1400 pc towards complex WA-WB using lack of absorption in EC 09470-1433 and a weak lower limit of 2470 pc using lack of absorption in EC 09452-1403. (iii) An upper z- height of 2470 pc towards a southern intermediate- velocity cloud (IVC) with v(LSR) = -55 km s(-1) using PG 2351 + 198. (iv) Detection of a possible IVC in Ca II absorption at v(LSR) = +52 km s(-1) using EC 20104-2944. No associated HI in emission is detected. At this position, normal Galactic rotation predicts velocities of up to similar to+ 25 km s(-1). The detection puts an upper z-height of 1860 pc to the cloud. (v) Tentative HI and Ca II K detections towards an IVC at similar to+70 km s(-1) in the direction of high-velocity cloud (HVC) complex WE, sightline EC 06387-8045, indicating that the IVC may be at a z-height lower than 1770 pc. (vi) Detection of Ca II K absorption in the spectrum of PG 0855 + 294 in the direction of IV20, indicating that this IVC has a z-height smaller than 4100 pc. (vii) A weak lower z-height of 4300 pc towards a small HVC with v(LSR) = +115 km s(-1) at l, b = 200degrees, + 52degrees, using lack of absorption in the Ca II K spectrum of PG 0955 + 291.
Resumo:
We describe medium-resolution spectroscopic observations taken with the ESO Multi-Mode Instrument (EMMI) in the CaII K line (lambda air = 3933.661 angstrom) towards 7 QSOs located in the line-of-sight to the Magellanic Bridge. At a spectral resolution R =lambda/Delta lambda = 6000, five of the sightlines have a signal-to-noise ( S/N) ratio of similar to 20 or higher. Definite Ca absorption due to Bridge material is detected towards 3 objects, with probable detection towards two other sightlines. Gas-phase CaII K Bridge and Milky Way abundances or lower limits for the all sightlines are estimated by the use of Parkes 21-cm H. emission line data. These data only have a spatial resolution of 14 arcmin compared with the optical observations which have milli-arcsecond resolution. With this caveat, for the three objects with sound CaII K detections, we find that the ionic abundance of CaII K relative to HI, A = log( N( CaK)/ N( HI)) for low- velocity Galactic gas ranges from - 8.3 to - 8.8 dex, with HI column densities varying from 3- 6 x 10(20) cm(-2). For Magellanic Bridge gas, the values of A are similar to 0.5 dex higher, ranging from similar to- 7.8 to - 8.2 dex, with N( HI) = 1- 5 x 1020 cm(-2). Higher values of A correspond to lower values of N( HI), although numbers are small. For the sightline towards B 0251 - 675, the Bridge gas has two different velocities, and in only one of these is CaII tentatively detected, perhaps indicating gas of a different origin or present-day characteristics ( such as dust content), although this conclusion is uncertain and there is the possibility that one of the components could be related to the Magellanic Stream. Higher signal-to-noise CaII K data and higher resolution H. data are required to determine whether A changes with N( HI) over the Bridge and if the implied difference in the metalicity of the two Bridge components towards B 0251-675 is real.
Resumo:
Ab initio molecular dynamics simulations have been performed for the first time on the room-temperature organic ionic liquid dimethyl imidazolium chloride [DMIM][Cl] using density functional theory. The aim is to compare the local liquid structure with both that obtained from two different classical force fields and from neutron scattering experiments. The local structure around the cation shows significant differences compared to both the classical calculations and the neutron results. In particular, and unlike in the gas-phase ion pair, chloride ions tend to be located near a ring C-H proton in a position suggesting hydrogen bonding. The results are used to suggest ways in which the classical potentials may be improved.
Resumo:
The first definitive high-resolution single-crystal X-ray structure for the coordination of the 1-methylimidazole (Meimid) ligand to UO2(Ac)2 (Ac = CH3CO2) is reported. The crystal structure evidence is confirmed by IR, Raman, and UV-vis spectroscopic data. Direct participation of the nitrogen atom of the Meimid ligand in binding to the uranium center is confirmed. Structural analysis at the DFT (B3LYP) level of theory showed a conformational difference of the Meimid ligand in the free gas-phase complex versus the solid state due to small energetic differences and crystal packing effects. Energetic analysis at the MP2 level in the gas phase supported stronger Meimid binding over H2O binding to both UO2(Ac)2 and UO2(NO3)2. In addition, self-consistent reaction field COSMO calculations were used to assess the aqueous phase energetics of combination and displacement reactions involving H2O and Meimid ligands to UO2R2 (R = Ac, NO3). For both UO2(NO3)2 and UO2(Ac)2, the displacement of H2O by Meimid was predicted to be energetically favorable, consistent with experimental results that suggest Meimid may bind uranyl at physiological pH. Also, log(Knitrate/KAc) calculations supported experimental evidence that the binding stoichiometry of the Meimid ligand is dependent upon the nature of the reactant uranyl complex. These results clearly demonstrate that imidazole binds to uranyl and suggest that binding of histidine residues to uranyl could occur under normal biological conditions.
Resumo:
We present a new version of the UMIST Database for Astrochemistry, the fourth such version to be released to the public. The current version contains some 4573 binary gas-phase reactions, an increase of 10% from the previous (1999) version, among 420 species, of which 23 are new to the database. Major updates have been made to ion-neutral reactions, neutral-neutral reactions, particularly at low temperature, and dissociative recombination reactions. We have included for the first time the interstellar chemistry of fluorine. In addition to the usual database, we have also released a reaction set in which the effects of dipole-enhanced ion-neutral rate coefficients are included. These two reactions sets have been used in a dark cloud model and the results of these models are presented and discussed briefly. The database and associated software are available on the World Wide Web at www.udfa.net. Tables 1, 2, 4 and 9 are only available in electronic form at http://www.aanda.org
Resumo:
Aims.We use observations and models of molecular D/H ratios to probe the physical conditions and chemical history of the gas and to differentiate between gas-phase and grain-surface chemical processing in star forming regions. Methods: As a follow up to previous observations of HDCO/H2CO and DCN/HCN ratios in a selection of low-mass protostellar cores, we have measured D2CO/H2CO and N2D^+/N2H+ ratios in these same sources. For comparison, we have also measured N2D^+/N2H+ ratios towards several starless cores and have searched for N2D+ and deuterated formaldehyde towards hot molecular cores (HMCs) associated with high mass star formation. We compare our results with predictions from detailed chemical models, and to other observations made in these sources. Results: Towards the starless cores and low-mass protostellar sources we have found very high N2D+ fractionation, which suggests that the bulk of the gas in these regions is cold and heavily depleted. The non-detections of N2D+ in the HMCs indicate higher temperatures. We did detect HDCO towards two of the HMCs, with abundances 1-3% of H2CO. These are the first detections of deuterated formaldehyde in high mass sources since Turner (1990) measured HDCO/H2CO and D2CO/H2CO towards the Orion Compact Ridge. Figures 1-5 are only available in electronic form at http://www.aanda.org
Resumo:
We report on Australia Telescope Compact Array observations of the massive star-forming region G305.2+0.2 at 1.2 cm. We detected emission in five molecules towards G305A, confirming its hot core nature. We determined a rotational temperature of 26 K for methanol. A non-local thermodynamic equilibrium excitation calculation suggests a kinematic temperature of the order of 200 K. A time-dependent chemical model is also used to model the gas-phase chemistry of the hot core associated with G305A. A comparison with the observations suggest an age of between 2 × 104 and 1.5 × 105 yr. We also report on a feature to the south-east of G305A which may show weak Class I methanol maser emission in the line at 24.933 GHz. The more evolved source G305B does not show emission in any of the line tracers, but strong Class I methanol maser emission at 24.933 GHz is found 3 arcsec to the east. Radio continuum emission at 18.496 GHz is detected towards two H ii regions. The implications of the non-detection of radio continuum emission towards G305A and G305B are also discussed.
Resumo:
To date, 9 FMRFamide-related peptides (FaRPs) have been structurally characterised from Caenorhabditis elegans. Radioimmunometrical screening of an ethanolic extract of C. elegans revealed the presence of two additional FaRPs that were purified by reverse-phase HPLC and subjected to Edman degradation analysis and gas-phase sequencing. Unequivocal primary structures for the two FaRPs were determined as Ala-Ala-Asp-Gly-Ala-Pro-Leu-Ile-Arg-Phe-NH2 and Ser-Val-Pro-Gly-Val-Leu-Arg-Phe-NH2. Using MALDI-TOF mass. spectrometry, the molecular masses of the peptides were found to be 1032 Da (MH) and 875 Da (MH)(+), respectively. Two copies of AADGAPLIRFamide are predicted to be encoded on the precursor gene termed flp-13, while one copy of SVPGVLRFamide is located on flp-18. Synthetic replicates of the peptides were tested on Ascaris suum somatic muscle to assess bioactivity. ADDGAPLIRFamide had inhibitory effects on A. suum muscle strips, which occurred over a range of concentrations from a threshold for activity of 10 nM to 10 muM. SVPGVLRFamide was excitatory on A. suum somatic musculature from a threshold concentration for activity of 1 nM to 10 muM. The inhibitory and excitatory effects of AADGAPLIRFamide and SVPGVLRFamide, respectively, were the same for dorsal and ventral muscle strips as well as innervated and denervated preparations, suggesting that these physiological effects are not nerve cord dependent. Addition of ADDGAPLIRFamide (10 muM) to muscle strips preincubated in high-K+ and -Ca2+-free medium resulted in a normal inhibitory response. Peptide addition to muscle strips preincubated in Cl--free medium showed no inhibitory response, suggesting that the inhibitory response of the peptide may be chloride mediated. A normal excitatory response was noted following the addition of 10 muM SVPGVLRFamide to muscle strips preincubated in high-K+, Ca2+- and Cl--free media. (C) 2001 Academic Press.
Resumo:
The atomic structures of gold supported on (111) and (110) surfaces of CeO2 have been studied using density-functional theory calculations. A single Au atom is placed on three adsorption sites on the surfaces; the stoichiometric surfaces, an oxygen vacancy and a Ce-vacancy. It is found that (i) the Au adsorption energies are in the following order: E-ad(Ce-vacancy) > E-ad(O-vacancy) > E-ad(stoichiometric surface); and (ii) the Au atom adsorption on the Ce-vacancy activates O atoms nearby. One 0 atom is less stable than that in O-2 in the gas phase and another O atom is much easier to remove compared to that of the stoichiometric surfaces. These results suggest that the Au adsorption on Ce-vacancies not only creates an O-vacancy but also activates an O atom nearby. This provides a piece of direct evidence that Au adsorption on a Ce-vacancy may be responsible for some unique catalytic properties of Au/CeO2. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
CO dissociation and O removal (water formation) are two important processes in the Fischer-Tropsch synthesis. In this study, both processes are studied on the flat and stepped Co(0 0 0 1) using density functional theory. It is found that (i) it is difficult for CO to dissociate on the flat Co(0 0 0 1) due to the high barrier of 1.04 eV relative to the CO molecule in the gas phase; (ii) the stepped Co(0 0 0 1) is much more favoured for CO dissociation; (iii) the first step in water formation, O + H --> OH, is unlikely to occur on the flat Co(0 0 0 1) due to the high barrier of 1.72 eV, however, this reaction can become feasible on steps where the barrier is reduced to 0.73 eV; and (iv) the barrier in the second step, OH + H --> H2O, on steps is higher than that on the flat surface. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Density-functional theory has been used to investigate the chemisorption of S, SH, and H2S as well as the coadsorption of S and H and SH and H on Pt(111). In addition reaction pathways and energy profiles for the conversion of adsorbed S and H into gas-phase H2S have been determined. It has been found that S, SH, and H2S bind preferentially at face-centered-cubic (fcc), bridge, and top sites, respectively. Both the S+H and SH+H reactions have high barriers (similar to1 eV) and high exothermicities (similar to1 eV). This reveals that adsorbed H2S and SH are highly unstable adsorbates on Pt(111) and that adsorbed S (and H) is the most stable SHX (X=0,1,2) intermediate on Pt(111) (C) 2001 American Institute of Physics.
Resumo:
Aims. We study the dependence of the profiles of molecular abundances and line emission on the accretion flow in the hot (100 K) inner region of protoplanetary disks.
Methods. The gas-phase reactions initiated by evaporation of the ice mantle on dust grains are calculated along the accretion flow. We focus on methanol, a molecule that is formed predominantly by the evaporation of warm ice mantles, to demonstrate how its abundance profile and line emission depend on the accretion flow.
Results. Our results indicate that some evaporated molecules retain high abundances only when the accretion velocity is sufficiently high, and that methanol could be useful as a diagnostic of the accretion flow by means of ALMA observations at the disk radius of 10 AU.
Resumo:
We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC3N has been observed in hot cores, the longer chained species, HC5N, HC7N and HC9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as ‘chemical clocks’ which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales, ~10^2.5 yr. We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC5N and HC7N in Walsh et al. are analysed and discussed.