54 resultados para Frozen fruit
Resumo:
BACKGROUND: Improving diet and lifestyle is important for prevention of cardiovascular disease (CVD). Observational evidence suggests that increasing fruit and vegetable (FV) consumption may lower CVD risk, largely through modulation of established risk factors, but intervention data are required to fully elucidate the mechanisms by which FVs exert benefits on vascular health.
OBJECTIVE: The aim of this study was to examine the dose-response effect of FV intake on cardiovascular risk factors in adults at high CVD risk.
METHODS: This was a randomized controlled parallel group study involving overweight adults (BMI: >27 and ≤35 kg/m(2)) with a habitually low FV intake (≤160 g/d) and a high total risk of developing CVD (estimated ≥20% over 10 y). After a 4-wk run-in period where FV intake was limited to <2 portions/d (<160 g/d), 92 eligible participants were randomly assigned to 1 of 3 groups: to consume either 2, 4, or 7 portions (equivalent to 160 g, 320 g, or 560 g, respectively) of FVs daily for 12 consecutive weeks. Fasting venous blood samples were collected at baseline (week 4) and post-intervention (week 16) for analysis of lipid fractions and high-sensitivity C-reactive protein (hsCRP) concentrations. Compliance with the FV intervention was determined with use of self-reported FV intake and biomarkers of micronutrient status. Ambulatory blood pressure and body composition were also measured pre- and post-intervention.
RESULTS: A total of 89 participants completed the study and body composition remained stable throughout the intervention period. Despite good compliance with the intervention, no significant difference was found between the FV groups for change in measures of ambulatory blood pressure, plasma lipids, or hsCRP concentrations.
CONCLUSIONS: There was no evidence of a dose-response effect of FV intake on conventional CVD risk factors measured in overweight adults at high CVD risk. This trial was registered at clinicaltrials.gov as NCT00874341.
Resumo:
PURPOSE: The aim of this study was to determine whether combining potential biomarkers of fruit and vegetables is better at predicting FV intake within FV intervention studies than single biomarkers.
DESIGN: Data from a tightly controlled randomised FV intervention study (BIOFAV; all food provided and two meals/day on weekdays consumed under supervision) were used. A total of 30 participants were randomised to either 2, 5 or 8 portions FV/day for 4 weeks, and blood samples were collected at baseline and 4 weeks for plasma vitamin C and serum carotenoid analysis. The combined biomarker approach was also tested in three further FV intervention studies conducted by the same research team, with less strict dietary control (FV provided and no supervised meals).
RESULTS: The combined model containing all carotenoids and vitamin C was a better fit than either the vitamin C only (P < 0.001) model or the lutein only (P = 0.006) model in the BIOFAV study. The C-statistic was slightly lower in the lutein only model (0.85) and in the model based upon factor analysis (0.88), and much lower in the vitamin C model (0.68) compared with the full model (0.95). Results for the other studies were similar, although the differences between the models were less marked.
CONCLUSIONS: Although there was some variation between studies, which may relate to the level of dietary control or participant characteristics, a combined biomarker approach to assess overall FV consumption may more accurately predict FV intake within intervention studies than the use of a single biomarker. The generalisability of these findings to other populations and study designs remains to be tested.
Resumo:
Cadmium and lead were determined in fruit and vegetable produce (~1300 samples) collected from a field and market basket study of locally grown produce from the South-West of Britain (Devon and Cornwall). These were compared with similarly locally grown produce from the North-East of Britain (Aberdeenshire). The concentrations of cadmium and lead in the market basket produce were compared to the maximum levels (ML) set by the European Union (EU). For cadmium 0.2% of the samples exceeded the ML, and 0.6% of the samples exceeded the ML for lead. The location of cadmium and lead in potatoes was performed using laser ablation ICP-MS. All tested samples exhibited higher lead concentrations, and most exhibited increased concentrations of cadmium in the potato skin compared to the flesh. The concentrations of cadmium and lead found in fruits and vegetables sampled during this study do not increase concern about risk to human health.
Resumo:
We used glycine betaine (5–20% w/v) for blanching green peas (100°C, 60 s), and their subsequent freezing and storage (–20°C, 90 days). Blanching after the addition of glycine betaine at ≥10% (w/v) followed by a 90 day storage period which resulted in the most desirable outcome: higher vitamin C levels, a superior green color, enhanced organoleptic quality and texture, and improved retention of peroxidase and lipoxygenase activity relative to control peas (no glycine betaine added). Microscopic characterizations of control and treated peas revealed that glycine betaine acts as a cryoprotectant which maintains cellular integrity. Glycine betaine (10% w/v) could be used commercially for production of frozen peas with better quality attributes.
Resumo:
BACKGROUND: Fruit and vegetable (FV) based intervention studies can be effective in increasing short term FV consumption. However, the longer term efficacy of such interventions is still unclear. The aim of the current study was to examine the maintenance of change in FV consumption 18-months after cessation of a FV intervention and to examine the effect of participating in a FV intervention on barriers to FV consumption.
METHODS: A follow-up of a randomised controlled FV trial in 83 older adults (habitually consuming ≤2 portions/day) was conducted. At baseline, participants were assigned to continue consuming ≤2 portions FV/day or consume ≥5 portions FV/day for 16-weeks. We assessed FV intake and barriers to FV consumption at baseline, end of intervention and 18-months post-intervention.
RESULTS: At 18-months, mean FV intakes in both groups were greater than baseline. The 5 portions/day group continued to show greater increases in FV consumption at 18-months than the 2 portions/day group (p < 0.01). At 18-months, both groups reported greater liking (p < 0.01) and ease in consuming FV (p = 0.001) while difficulties with consuming FV decreased (p < 0.001). The 2 portions/day group reported greater awareness of FV recommendations at 18-months (p < 0.001).
CONCLUSIONS: Participating in a FV intervention can lead to longer-term positive changes in FV consumption regardless of original group allocation.
TRIAL REGISTRATION: Clinical Trials.gov NCT00858728 .
Resumo:
BACKGROUND AND AIM: Retinal vessel abnormalities are associated with cardiovascular disease (CVD) risk. To date, there are no trials investigating the effect of dietary factors on the retinal microvasculature. This study examined the dose response effect of fruit and vegetable (FV) intake on retinal vessel caliber in overweight adults at high CVD risk.
METHODS AND RESULTS: Following a 4 week washout period, participants were randomized to consume either 2 or 4 or 7 portions of FV daily for 12 weeks. Retinal vessel caliber was measured at baseline and post-intervention. A total of 62 participants completed the study. Self-reported FV intake indicated good compliance with the intervention, with serum concentrations of zeaxanthin and lutein increasing significantly across the groups in a dose-dependent manner (P for trend < 0.05). There were no significant changes in body composition, 24-h ambulatory blood pressure or fasting blood lipid profiles in response to the FV intervention. Increasing age was a significant determinant of wider retinal venules (P = 0.004) whereas baseline systolic blood pressure was a significant determinant of narrower retinal arterioles (P = 0.03). Overall, there was no evidence of any short-term dose-response effect of FV intake on retinal vessel caliber (CRAE (P = 0.92) or CRVE (P = 0.42)).
CONCLUSIONS: This study demonstrated no effect of increasing FV intake on retinal vessel caliber in overweight adults at high risk of developing primary CVD.