49 resultados para Freedom of assembly and association
Resumo:
Aim: The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms.
Methods: The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO center dot), 2,2-diphenyl-1-picrylhydrazyl (DPPH center dot) and peroxyl (ROO center dot) radicals was evaluated in-vitro. The relationship between the erythopoietic and oxidative-nitrosative stress response to poikilocapneic hypoxia was determined separately in-vivo by sampling arterial blood from eleven males in normoxia and following 12 h exposure to 13% oxygen. Electron paramagnetic resonance spectroscopy, ELISA and ozone-based chemiluminescence were employed for direct detection of ascorbate (A(center dot-)) and N-tert-butyl-a-phenylnitrone spin-trapped alkoxyl (PBN-OR) radicals, 3-nitrotyrosine (3-NT) and nitrite (NO2-).
Results: We found rHuEPO to be a potent scavenger of HO center dot (k(r) = 1.03-1.66 x 10(11) M-1 s(-1)) with the capacity to inhibit Fenton chemistry through catalytic iron chelation. Its ability to scavenge DPPH. and ROO center dot was also superior compared to other more conventional antioxidants. Hypoxia was associated with a rise in arterial EPO and free radical-mediated reduction in nitric oxide, indicative of oxidative-nitrosative stress. The latter was confirmed by an increased systemic formation of A(center dot-), PBN-OR, 3-NT and corresponding loss of NO2- (P <0.05 vs. normoxia). The erythropoietic and oxidative-nitrosative stress responses were consistently related (r =-0.52 to 0.68, P <0.05).
Conclusion: These findings demonstrate that EPO has the capacity to act as a biological antioxidant and provide a mechanistic basis for its reported cytoprotective benefits within the clinical setting.
Resumo:
This paper describes the simulation of representative aircraft wing stiffened panels under axial compression loading, to determine the effects of varying the manufacturing shape and assembly joining methods on stiffened panel performance. T-stiffened and Z-stiffened panels are modelled in Abaqus simulating integral, co-cured and mechanically fastened joints. The panels are subject to an edge compressive displacement along the stiffener axis until failure and the ultimate failure load and buckling performance is assessed for each. Integral panels consistently offer the highest performance. Co-cured panels demonstrate reduced performance (3-5% reduction in ultimate load relative to integral) caused by localised cohesive failure and skin-stiffener separation. The mechanically fastened panels are consistently the weakest joint (19-25% reduction in ultimate load relative to integral) caused primarily by inter-rivet buckling between fasteners
Resumo:
Death effector domains (DEDs) are protein-protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.
Resumo:
Two-dimensional metal nanoparticle arrays are normally constructed at liquid–oil interfaces by modifying the surfaces of the constituent nanoparticles so that they self-assemble. Here we present a general and facile new approach for promoting such interfacial assembly without any surface modification. The method use salts that have hydrophobic ions of opposite charge to the nanoparticles, which sit in the oil layer and thus reduce the Coulombic repulsion between the particles in the organic phase, allowing the particles to sit in close proximity to each other at the interface. The advantage of this method is that because it does not require the surface of the particles to be modified it allows nonmetallic particles including TiO2 and SiO2 to be assembled into dense interfacial layers using the same procedure as is used for metallic particles. This opens up a route to a new family of nanostructured functional materials.