127 resultados para Flat panel displays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To improve the integration of MRI with radiotherapy treatment planning, our department fabricated a flat couch top for our MR scanner. Setting up using this couch top meant that the patients were physically higher up in the scanner and, posteriorly, a gap was introduced between the patient and radiofrequency coil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcript of a Panel Discussion at the Dartmouth Symposium, chaired by Eric Lyon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of skin sub-stiffening features has the potential to modify the local stability and fatigue crack growth performance of stiffened panels. Proposed herein is a method to enable initial static strength sizing of panels with such skin sub-stiffening features. The method uses bespoke skin buckling coefficients, automatically generated by Finite Element analysis and thus limits the modification to the conventional aerospace panel initial sizing process. The approach is demonstrated herein and validated for prismatic sub-stiffening features. Moreover, examination of the generated buckling coefficient data illustrates the influence of skin sub-stiffening on buckling behavior, with static strength increases typically corresponding to a reduction in the number of initial skin longitudinal buckle half-waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine lateralization of lateral displays in convict cichlids, Amatitlania nigrofasciata, and show a population level preference for showing the right side. This enables contesting pairs of fish to align in a head-to-tail posture, facilitating other activities. We found individuals spent a shorter mean time in each left compared with each right lateral display. This lateralization could lead to contesting pairs using a convention to align in a predictable head-to-tail arrangement to facilitate the assessment of fighting ability. It has major implications for the common use of mirror images to study fish aggression, because the 'opponent' would never cooperate and would consistently show the incorrect side when the real fish shows the correct side. With the mirror, the 'normal' head-to-tail orientation cannot be achieved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In collaboration with Airbus-UK, the dimensional growth of aircraft panels while being riveted with stiffeners is investigated. Small panels are used in this investigation. The stiffeners have been fastened to the panels with rivets and it has been observed that during this operation the panels expand in the longitudinal and transverse directions. It has been observed that the growth is variable and the challenge is to control the riveting process to minimize this variability. In this investigation, the assembly of the small panels and longitudinal stiffeners has been simulated using static stress and nonlinear explicit finite element models. The models have been validated against a limited set of experimental measurements; it was found that more accurate predictions of the riveting process are achieved using explicit finite element models. Yet, the static stress finite element model is more time efficient, and more practical to simulate hundreds of rivets and the stochastic nature of the process. Furthermore, through a series of numerical simulations and probabilistic analyses, the manufacturing process control parameters that influence panel growth have been identified. Alternative fastening approaches were examined and it was found that dimensional growth can be controlled by changing the design of the dies used for forming the rivets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal fatigue analysis based on 2D finite difference and 3D finite element methods is carried out to study the performance of solar panel structure during micro-satellite life time. Solar panel primary structure consists of honeycomb structure and composite laminates. The 2D finite difference (I-DEAS) model yields predictions of the temperature profile during one orbit. Then, 3D finite element analysis (ANSYS) is applied to predict thermal fatigue damage of solar panel structure. Meshing the whole structure with 2D multi-layer shell elements with sandwich option is not efficient, as it misses thermal response of the honeycomb structure. So we applied a mixed approach between 3D solid and 2D shell elements to model the solar panel structure without the sandwich option.