137 resultados para Fermi super-fluid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Open abdominal aortic aneurysm (AAA) repair is associated with a significant morbidity (primarily respiratory and cardiac complications) and an overall mortality rate of 4% to 10%. We tested the hypothesis that perioperative fluid restriction would reduce complications and improve outcome after elective open AAA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND—Multiple sensory neuropeptides are present in human airways and may contribute to diseases such as asthma. This study quantified and characterised substance P (SP), neurokinin A (NKA), and calcitonin gene related peptide (CGRP) immunoreactivity in bronchoalveolar lavage fluid in asthmatic and normal subjects.
METHODS—Using specific radioimmunoassay (RIA), SP, NKA and CGRP were measured in bronchoalveolar lavage fluid from asthmatic subjects (n = 5), normal subjects (n = 5), atopic non-asthmatic subjects (n = 6), and asthmatic subjects four hours after allergen challenge (n = 12). Peptide immunoreactivity was characterised using high performance liquid chromatography (HPLC) and RIA.
RESULTS—No SP or CGRP immunoreactivity was detected in any of the fractions from samples after extraction, HPLC, and RIA. Non-specific binding resulted in spurious SP immunoreactivity being detected in bronchoalveolar lavage fluid when no extraction process was employed. NKA was detected in significant amounts in asthmatic (median 550, range 425-625 pg/ml) and normal subjects (median 725, range 350-1425 pg/ml). The level of NKA was significantly higher in the asthmatic subjects after allergen challenge (median 750, range 350-1250 pg/ml) than in unchallenged asthmatic subjects (median 600, range 425-600 pg/ml, p<0.01).
CONCLUSIONS—Extraction and characterisation of peptides from bronchoalveolar lavage fluid must be performed to ensure that the measured immunoreactivity represents target peptide. NKA is present in bronchoalveolar lavage fluid in high concentrations and is the predominant tachykinin. The concentrations of NKA are similar in normal subjects and subjects with mild asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell counting of bronchoalveolar lavage (BAL) fluid is performed manually in routine practice. This has both methodological and inherent errors; however, the accuracy and suitability of automated counting devices have been questioned. In this study, a Coulter(R) Counter D Industrial model was calibrated and then used to measure the total cell count in unprocessed bronchoalveolar lavage fluid, and compared to a standard manual method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two- body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most single-reed woodwind instrument models rely on a quasistationary approximation to describe the relationship between the volume flow and. the pressure difference across the reed channel. Semiempirical models based on the quasistationary approximation are very useful in explaining the fundamental characteristics of this family of instruments such as self-sustained oscillations and threshold of blowing pressure. However, they fail at explaining more complex phenomena associated with the fluid-structure interaction during dynamic flow regimes, such as the transient and steady-state behavior of the system as a function. of the mouthpiece geometry. Previous studies have discussed the accuracy of the quasistationary approximation but the amount of literature on the subject is sparse, mainly due to the difficulties involved in the measurement of dynamic flows in channels with an oscillating reed. In this paper, a numerical technique based on the lattice Boltzmann method and a finite difference scheme is proposed in order to investigate the characteristics of fully coupled fluid-structure interaction in single-reed mouthpieces with different channel configurations. Results obtained for a stationary simulation with a static reed agree very well with those predicted by the literature based on the quasistationary approximation. However, simulations carried out for a dynamic regime with dn oscillating reed show that the phenomenon associated with flow detachment and reattachment diverges considerably frorn the theoretical assumptions. Furthermore, in the case of long reed channels, the results obtained for the vena contracta factor are in significant disagreement with those predicted by theory. For short channels, the assumption of constant vena contracta was found to be valid for only 40% of the duty cycle. (c) 2007 Acoustical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-phase microreactors and micro-heat-exchangers have been widely used in industrial and scientific applications over the last decade. In several cases, operation of microreactors has shown that their expected efficiency cannot be reached either due to non-uniform distribution of reactants between different channels or due to flow maldistribution between individual microreactors working in parallel. The latter problem can result in substantial temperature deviations between different microreactors resulting in thermal run away which could arise from an exothermicreaction. Thus advances in the understanding of heat transfer and fluid flow distribution continue to be crucial in achieving improved performance, efficiency and safety in microstructured reactors used for different applications. This paper presents a review of the experimental and numerical results on fluid flow distribution, heat transfer and combination thereof, available in the open literature. Heat transfer in microchannels can be suitably described by standard theory and correlations, but scaling effects (entrance effects, conjugate heat transfer, viscous heating, and temperature-dependent properties) have often to be accounted for in microsystems. Experiments with single channels are in good agreement with predictions from the published correlations. The accuracy of multichannel experiments is lower due to flow maldistribution. Special attention is devoted to theoretical and experimental studies on the effect of a flow maldistribution on the thermal and conversion response of catalytic microreactors. There view concludes with a set of design recommendations aimed at improving the reactor performance. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We retrieved synovial tissue and fluid samples from patients undergoing primary total hip replacement (THR) (n 15), revision of aseptically loose THR (n 12), primary total knee replacement (TKR) (n 13) and revision of aseptically loose TKR (n 6). Several histological parameters were assessed on a relative scale of 1-4. Primary TJRs were clinically evaluated for degree of osteoarthrosis. Revision TJRs were assessed for migration of the implant, gross loosening and the degree of radiolucency. Cytokine levels in synovial fluid were determined with ELISA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of the intensity of a relativistic laser beam propagating through a dense quantum plasma is investigated, by considering different plasma regimes. A cold quantum fluid plasma and then a thermal quantum description(s) is (are) adopted, in comparison with the classical case of reference. Considering a Gaussian beam cross-section, we investigate both the longitudinal compression and lateral/longitudinal localization of the intensity of a finite-radius electromagnetic pulse. By employing a quantum plasma fluid model in combination with Maxwell's equations, we rely on earlier results on the quantum dielectric response, to model beam-plasma interaction. We present an extensive parametric investigation of the dependence of the longitudinal pulse compression mechanism on the electron density in cold quantum plasmas, and also study the role of the Fermi temperature in thermal quantum plasmas. Our numerical results show pulse localization through a series of successive compression cycles, as the pulse propagates through the plasma. A pulse of 100 fs propagating through cold quantum plasma is compressed to a temporal size of approximate to 1.35 attosecond and a spatial size of approximate to 1.08 10(-3) cm. Incorporating Fermi pressure via a thermal quantum plasma model is shown to enhance localization effects. A 100 fs pulse propagating through quantum plasma with a Fermi temperature of 350 K is compressed to a temporal size of approximate to 0.6 attosecond and a spatial size of approximate to 2.4 10(-3) cm. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: