51 resultados para Fatty-acid Derivatives
Resumo:
OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.
Resumo:
The fatty acid composition of the cellular lipids of Rhodococcus rhodochrous NCIMB 13064 grown on various long-chain haloalkanes has been investigated and the influence of halogen substituents, carbon chain length and the position of halogen substitution in the growth substrate explored. Of the total fatty acids present in cells grown on 1-chloro-, 1-bromo- and 1-iodohexadecane, 75, 90 and 81%, respectively, were substituted in the omega-position by the corresponding halogen but only 1% of the fatty acids present after growth on 1-fluorotetradecane were fluorinated in this position. The extent of the halofatty acid incorporation with different halogen substituents in the growth substrate appears to reflect the degree to which oxygenase attack is restricted to the non-halogenated end of the haloalkane. Studies of the fatty acid composition of cells after growth on a series of 1-chloroalkanes containing an even number of carbon atoms between C-10 and C-18 indicated chlorofatty acid incorporation from C-12 to C-18 substrates at levels ranging from 21% with C-12 to 75% with C-16. The chlorofatty acids formed by initial oxidation of the chloroalkane were chain-lengthened or chain-shortened by from two to eight carbon atoms, with accompanying desaturation in some instances. Substantial quantities of a methyl-branched C-19:0 chlorofatty acid were also present with several chloroalkane substrates, When the fatty acid composition of cells after growth on 1-bromoalkanes containing an odd number of carbon atoms between C-11 and C-17 was examined, the incorporation of bromofatty acids was observed with C-13, C-15 and C-17 substrates; a maximum of 76% was recorded for the C-15 bromoalkane. As with even chain-length chloroalkanes, both chain-lengthening and -shortening occurred predominantly via two-carbon units so that most bromoacids present possessed an odd number of carbon atoms, When 1-bromododecane or 2-bromododecane were substrates, overall incorporations of bromofatty acids into the lipid fraction were very similar, demonstrating that the position of halogen substitution in the haloalkane was not critical in determining the extent of incorporation of the haloacids into cellular lipids. The results of the study indicate a mechanism by which degradation products of chlorinated paraffins could enter the biological food chain.
Resumo:
Macrophage cholesterol homeostasis is a key process involved in the initiation and progression of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) regulate the transcription of the genes involved in cholesterol homeostasis and thus represent an important therapeutic target in terms of reducing atherosclerosis. Conjugated linoleic acid (CLA) is a potent anti-atherogenic dietary fatty acid in animal models of atherosclerosis and is capable of activating PPARs in vitro and in vivo. Therefore, this study examined whether the anti-atherogenic effects of CLA in vivo could be ascribed to altered cholesterol homeostasis in macrophages and macrophage derived foam cells. Of several genes that regulate cholesterol homeostasis investigated, CLA had most effect on the class B scavenger receptor CD36. The cis-9,trans-11 CLA (c9,t11-CLA) and trans-10,cis-12 CLA (t10,c12-CLA) isomers augmented CD36 mRNA expression (P
Resumo:
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.
Resumo:
In this Letter, an unambiguous synthetic strategy is reported for the preparation of enantiomerically purecis-5-halo-piperazic acid derivatives in single diastereoisomer form. Contrary to the recent report by Shin and co-workers (Chem. Lett. 2001, 1172), in which it is claimed that the Ph3P and N-chlorosuccinimide (NCS)-mediated chlorination of (3R,5S)-trans-N(1),N(2)-di-t-Boc-5-hydroxy-piperazic acid derivative 1proceeds with retention of configuration at C(5) to give 2, we now show that this and related Ph3P-mediated halogenations all occur with SN2 inversion at the alcohol center, as is customary for such reactions. Specifically, we demonstrate that the (3R,5S)-trans-5-Cl-piperazic acid derivative 2 claimed by Shin and co-workers (Chem. Lett. 2001, 1172) is in actual fact the chlorinated (3S,5R)-enantiomer 6, which must have been prepared from the cis-(3S,5S)-alcohol 3, a molecule whose synthesis is not formally described in the Shin paper. We further show here that the cis-(3R,5R)-5-Cl-Piz 13 claimed by Shin and co-workers inChem. Lett. 2001, 1172, is also (3S,5R)-trans-5-Cl-Piz 6. Authentic 13 has now been synthesized by us, for the very first time, here. Since Lindsley and Kennedy have recently utilized the now invalid Shin and co-workers’ retentive Ph3P/NCS chlorination procedure on 1 in their synthetic approach to piperazimycin A (Tetrahedron Lett. 2010, 51, 2493), it follows that their claimed 5-Cl-Piz-containing dipeptide 25 probably has the alternate structure 26, where the 5-Cl-Piz residue has a 3,5-cis-configuration. The aforementioned stereochemical misassignments appear to have come from a mix-up of starting materials by Shin and co-workers (Chem. Lett. 2001, 1172), and an under-appreciation of the various steric and conformational effects that operate in N(2)-acylated piperazic acid systems, most especially rotameric A1,3-strain. The latter has now been unambiguously delineated and defined here under the banner of the A1,3-rotamer effect.
Resumo:
This study was conducted to explore the effect of different autoclave heating times (30, 60 and 90 min) on fatty acids supply and molecular stability in Brassica carinata seed. Multivariate spectral analyses and correlation analyses were also carried out in our study. The results showed that autoclaving treatments significantly decreased the total fatty acids content in a linear fashion in B. carinata seed as heating time increased. Reduced concentrations were also observed in C18:3n3, C20:1, C22:1n9, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), omega 3 (ω-3) and 9 (ω-9) fatty acids. Correspondingly, the heated seeds showed dramatic reductions in all the peak intensities within lipid-related spectral regions. Results from agglomerative hierarchical cluster analysis (AHCA) and principal component analysis (PCA) indicated that the raw oilseed had completely different structural make-up from the autoclaved seeds in both CH3 and CH2 asymmetric and symmetric stretching region (ca. 2999–2800 cm−1) and lipid ester Cdouble bond; length as m-dashO carbonyl region (ca. 1787–1706 cm−1). However, the oilseeds heated for 30, 60 and 90 min were not grouped into separate classes or ellipses in all the lipid-related regions, indicating that there still exhibited similarities in lipid biopolymer conformations among autoclaved B. carinata seeds. Moreover, strong correlations between spectral information and fatty acid compositions observed in our study could imply that lipid-related spectral parameters might have a potential to predict some fatty acids content in oilseed samples, i.e. B. carinata. However, more data from large sample size and diverse range would be necessary and helpful to draw up a final conclusion.