48 resultados para Failure time data analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates the unparalleled value of full scale data which has been acquired from ocean trials of Aquamarine Power’s Oyster 800 Wave Energy Converter (WEC) at the European Marine Energy Centre (EMEC), Orkney, Scotland.
High quality prototype and wave data were simultaneously recorded in over 750 distinct sea states (comprising different wave height, wave period and tidal height combinations) and include periods of operation where the hydraulic Power Take-Off (PTO) system was both pressurised (damped operation) and de-pressurised (undamped operation).
A detailed model-prototype correlation procedure is presented where the full scale prototype behaviour is compared to predictions from both experimental and numerical modelling techniques via a high temporal resolution wave-by-wave reconstruction. This unquestionably provides the definitive verification of the capabilities of such research techniques and facilitates a robust and meaningful uncertainty analysis to be performed on their outputs.
The importance of a good data capture methodology, both in terms of handling and accuracy is also presented. The techniques and procedures implemented by Aquamarine Power for real-time data management are discussed, including lessons learned on the instrumentation and infrastructure required to collect high-value data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tide gauge data are identified as legacy data given the radical transition between observation method and required output format associated with tide gauges over the 20th-century. Observed water level variation through tide-gauge records is regarded as the only significant basis for determining recent historical variation (decade to century) in mean sea-level and storm surge. There are limited tide gauge records that cover the 20th century, such that the Belfast (UK) Harbour tide gauge would be a strategic long-term (110 years) record, if the full paper-based records (marigrams) were digitally restructured to allow for consistent data analysis. This paper presents the methodology of extracting a consistent time series of observed water levels from the 5 different Belfast Harbour tide gauges’ positions/machine types, starting late 1901. Tide-gauge data was digitally retrieved from the original analogue (daily) records by scanning the marigrams and then extracting the sequential tidal elevations with graph-line seeking software (Ungraph™). This automation of signal extraction allowed the full Belfast series to be retrieved quickly, relative to any manual x–y digitisation of the signal. Restructuring variably lengthed tidal data sets to a consistent daily, monthly and annual file format was undertaken by project-developed software: Merge&Convert and MergeHYD allow consistent water level sampling both at 60 min (past standard) and 10 min intervals, the latter enhancing surge measurement. Belfast tide-gauge data have been rectified, validated and quality controlled (IOC 2006 standards). The result is a consistent annual-based legacy data series for Belfast Harbour that includes over 2 million tidal-level data observations.