59 resultados para Face Protectors.
Resumo:
This chapter describes an experimental system for the recognition of human faces from surveillance video. In surveillance applications, the system must be robust to changes in illumination, scale, pose and expression. The system must also be able to perform detection and recognition rapidly in real time. Our system detects faces using the Viola-Jones face detector, then extracts local features to build a shape-based feature vector. The feature vector is constructed from ratios of lengths and differences in tangents of angles, so as to be robust to changes in scale and rotations in-plane and out-of-plane. Consideration was given to improving the performance and accuracy of both the detection and recognition steps.
Resumo:
Aim: To determine whether the use of an online or blended learning paradigm has the potential to enhance the teaching of clinical skills in undergraduate nursing.
Background: The need to adequately support and develop students in clinical skills is now arguably more important than previously considered due to reductions in practice opportunities. Online and blended teaching methods are being developed to try and meet this requirement, but knowledge about their effectiveness in teaching clinical skills is limited.
Design: Mixed methods systematic review, which follows the Joanna Briggs Institute User guide version 5.
Data Sources: Computerized searches of five databases were undertaken for the period 1995-August 2013.
Review Methods: Critical appraisal and data extraction were undertaken using Joanna Briggs Institute tools for experimental/observational studies and interpretative and critical research. A narrative synthesis was used to report results.
Results: Nineteen published papers were identified. Seventeen papers reported on online approaches and only two papers reported on a blended approach. The synthesis of findings focused on the following four areas: performance/clinical skill, knowledge, self-efficacy/clinical confidence and user experience/satisfaction. The e-learning interventions used varied throughout all the studies.
Conclusion: The available evidence suggests that online learning for teaching clinical skills is no less effective than traditional means. Highlighted by this review is the lack of available evidence on the implementation of a blended learning approach to teaching clinical skills in undergraduate nurse education. Further research is required to assess the effectiveness of this teaching methodology.
Resumo:
Recent work suggests that the human ear varies significantly between different subjects and can be used for identification. In principle, therefore, using ears in addition to the face within a recognition system could improve accuracy and robustness, particularly for non-frontal views. The paper describes work that investigates this hypothesis using an approach based on the construction of a 3D morphable model of the head and ear. One issue with creating a model that includes the ear is that existing training datasets contain noise and partial occlusion. Rather than exclude these regions manually, a classifier has been developed which automates this process. When combined with a robust registration algorithm the resulting system enables full head morphable models to be constructed efficiently using less constrained datasets. The algorithm has been evaluated using registration consistency, model coverage and minimalism metrics, which together demonstrate the accuracy of the approach. To make it easier to build on this work, the source code has been made available online.
Resumo:
This paper presents a novel method of audio-visual fusion for person identification where both the speech and facial modalities may be corrupted, and there is a lack of prior knowledge about the corruption. Furthermore, we assume there is a limited amount of training data for each modality (e.g., a short training speech segment and a single training facial image for each person). A new representation and a modified cosine similarity are introduced for combining and comparing bimodal features with limited training data as well as vastly differing data rates and feature sizes. Optimal feature selection and multicondition training are used to reduce the mismatch between training and testing, thereby making the system robust to unknown bimodal corruption. Experiments have been carried out on a bimodal data set created from the SPIDRE and AR databases with variable noise corruption of speech and occlusion in the face images. The new method has demonstrated improved recognition accuracy.
Resumo:
The Muslim Brotherhood is the most significant and enduring Sunni Islamist organization of the contemporary era. Its roots lie in the Middle East but it has grown into both a local and global movement, with its well-placed branches reacting effectively to take the opportunities for power and electoral competition offered by the Arab Spring.
Regarded by some as a force of moderation among Islamists, and by others as a façade hiding a terrorist fundamentalist threat, the potential influence of the Muslim Brotherhood on Middle Eastern politics remains ambiguous.The Muslim Brotherhood: The Arab Spring and its Future Face provides an essential insight into the organisation, with chapters devoted to specific cases where the Brotherhood has important impacts on society, the state and politics. Key themes associated with the Brotherhood, such as democracy, equality, pan-Islamism, radicalism, reform, the Palestine issue and gender, are assessed to reveal an evolutionary trend within the movement since its founding in Egypt in 1928 to its manifestation as the largest Sunni Islamist movement in the Middle East in the 21st century. The book addresses the possible future of the Muslim Brotherhood; whether it can surprise sceptics and effectively accommodate democracy and secular trends, and how its ascension to power through the ballot box might influence Western policy debates on their engagement with this manifestation of political Islam.
Drawing on a wide range of sources, this book presents a comprehensive study of a newly resurgent movement and is a valuable resource for students, scholars and policy makers focused on Middle Eastern Politics.
Resumo:
This piece of writing is an excerpt from a keynote talk given at the Symposium on Artistic Research in Borås, Sweden, on 28 November 2014.
Resumo:
In this paper, we introduce a novel approach to face recognition which simultaneously tackles three combined challenges: 1) uneven illumination; 2) partial occlusion; and 3) limited training data. The new approach performs lighting normalization, occlusion de-emphasis and finally face recognition, based on finding the largest matching area (LMA) at each point on the face, as opposed to traditional fixed-size local area-based approaches. Robustness is achieved with novel approaches for feature extraction, LMA-based face image comparison and unseen data modeling. On the extended YaleB and AR face databases for face identification, our method using only a single training image per person, outperforms other methods using a single training image, and matches or exceeds methods which require multiple training images. On the labeled faces in the wild face verification database, our method outperforms comparable unsupervised methods. We also show that the new method performs competitively even when the training images are corrupted.
Resumo:
With the rapid development of internet-of-things (IoT), face scrambling has been proposed for privacy protection during IoT-targeted image/video distribution. Consequently in these IoT applications, biometric verification needs to be carried out in the scrambled domain, presenting significant challenges in face recognition. Since face models become chaotic signals after scrambling/encryption, a typical solution is to utilize traditional data-driven face recognition algorithms. While chaotic pattern recognition is still a challenging task, in this paper we propose a new ensemble approach – Many-Kernel Random Discriminant Analysis (MK-RDA) to discover discriminative patterns from chaotic signals. We also incorporate a salience-aware strategy into the proposed ensemble method to handle chaotic facial patterns in the scrambled domain, where random selections of features are made on semantic components via salience modelling. In our experiments, the proposed MK-RDA was tested rigorously on three human face datasets: the ORL face dataset, the PIE face dataset and the PUBFIG wild face dataset. The experimental results successfully demonstrate that the proposed scheme can effectively handle chaotic signals and significantly improve the recognition accuracy, making our method a promising candidate for secure biometric verification in emerging IoT applications.