64 resultados para Expansive Clay


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many coastal areas of North America and Scandinavia, post-glacial clay sediments have emerged above sea level due to iso-static uplift. These clays are often destabilised by fresh water leaching and transformed to so-called quick clays as at the investigated area at Smørgrav, Norway. Slight mechanical disturbances of these materials may trigger landslides. Since the leaching increases the electrical resistivity of quick clay as compared to normal marine clay, the application of electromagnetic (EM) methods is of particular interest in the study of quick clay structures.

For the first time, single and joint inversions of direct-current resistivity (DCR), radiomagnetotelluric (RMT) and controlled-source audiomagnetotelluric (CSAMT) data were applied to delineate a zone of quick clay. The resulting 2-D models of electrical resistivity correlate excellently with previously published data from a ground conductivity metre and resistivity logs from two resistivity cone penetration tests (RCPT) into marine clay and quick clay. The RCPT log into the central part of the quick clay identifies the electrical resistivity of the quick clay structure to lie between 10 and 80 O m. In combination with the 2-D inversion models, it becomes possible to delineate the vertical and horizontal extent of the quick clay zone. As compared to the inversions of single data sets, the joint inversion model exhibits sharper resistivity contrasts and its resistivity values are more characteristic of the expected geology. In our preferred joint inversion model, there is a clear demarcation between dry soil, marine clay, quick clay and bedrock, which consists of alum shale and limestone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the performance of unsaturated soils under repeated loading. As part of the research, a triaxial system was developed that incorporates small-strain measurements using Hall effect transducers, in addition to suction measurements taken using a psychrometer. Tests were conducted on samples of kaolin under constant water mass conditions. The results address the effects of compaction effort and water content at the time of compaction on the overall performance of unsaturated soils, under different amplitudes of loading and different confining pressures. The results show that suction in the sample reduced with increasing number of loading cycles of the same magnitude. The resilient modulus initially increased with increasing water content up to approximately optimum water content, and then reduced substantially with further increase in water content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inclusion of granular columns in soft clay deposits leads to improvements in bearing capacity and overall stiffness along with a reduction in consolidation settlement. Many laboratory investigations have focused on aspects of bearing capacity, but published data on settlement performance is limited. This paper reports on some interesting findings obtained from a laboratory model study in respect of these issues. In this investigation, 300 mm diameter by 400 mm long samples of soft kaolin clay were reinforced with single or multiple granular columns of various lengths using the displacement and replacement installation methods. The experimental findings revealed that, for the same area replacement ratio, limited settlement reduction was achieved for single long floating columns and end-bearing column groups. Marginal improvements in settlement performance were also achieved for columns installed by the displacement method. No settlement reduction was achieved for short single floating columns while short floating granular column groups produced increased settlements. These observations were verified using contact pressure measurements between the footing and column/surrounding clay.