72 resultados para Estimated parameter
Resumo:
System Dynamics enables modelling and simulation of highly non-linear feedback systems to predict future system behaviour. Parameter estimation and equation formulation are techniques in System Dynamics, used to retrieve the values of parameters or the equations for ?ows and/or variables. These techniques are crucial for the annotations and thereafter the simulation. This paper critically examines existing and well established approaches in parameter estimation and equation formulation along with their limitations, identifying performance gaps as well as providing directions for potential future research.
Resumo:
In this research, a preliminary study was done to find out the initial parameter window to obtain the full-penetrated NiTi weldment. A L27 Taguchi experiment was then carried out to statistically study the effects of the welding parameters and their possible interactions on the weld bead aspect ratio (or penetration over fuse-zone width ratio), and to determine the optimized parameter settings to produce the full-penetrated weldment with desirable aspect ratio. From the statistical results in the Taguchi experiment, the laser mode was found to be the most important factor that substantially affects the aspect ratio. Strong interaction between the power and focus position was found in the Taguchi experiment. The optimized weldment was mainly of columnar dendritic structure in the weld zone (WZ), while the HAZ exhibited equiaxed grain structure. The XRD and DSC results showed that the WZ remained the B2 austenite structure without any precipitates, but with a significant decrease of phase transformation temperatures. The results in the micro-hardness and tensile tests indicated that the mechanical properties of NiTi were decreased to a certain extent after fibre laser welding.
Resumo:
Tolerance allocation is an important step in the design process. It is necessary to produce high quality components cost-effectively. However, the process of allocating tolerances can be time consuming and difficult, especially for complex models. This work demonstrates a novel CAD based approach, where the sensitivities of product dimensions to changes in the values of the feature parameters in the CAD model are computed. These are used to automatically establish the assembly response function for the product. This information has been used to automatically allocate tolerances to individual part dimensions to achieve specified tolerances on the assembly dimensions, even for tolerance allocation in more than one direction simultaneously. It is also shown how pre-existing constraints on some of the part dimensions can be represented and how situations can be identified where the required tolerance allocation is not achievable. A methodology is also presented that uses the same information to model a component with different amounts of dimensional variation to simulate the effects of tolerance stack-up. © 2014 Springer-Verlag France.
Resumo:
In the last decade, mobile phones and mobile devices using mobile cellular telecommunication network connections have become ubiquitous. In several developed countries, the penetration of such devices has surpassed 100 percent. They facilitate communication and access to large quantities of data without the requirement of a fixed location or connection. Assuming mobile phones usually are in close proximity with the user, their cellular activities and locations are indicative of the user's activities and movements. As such, those cellular devices may be considered as a large scale distributed human activity sensing platform. This paper uses mobile operator telephony data to visualize the regional flows of people across the Republic of Ireland. In addition, the use of modified Markov chains for the ranking of significant regions of interest to mobile subscribers is investigated. Methodology is then presented which demonstrates how the ranking of significant regions of interest may be used to estimate national population, results of which are found to have strong correlation with census data.
Resumo:
BACKGROUND: It is now common for individuals to require dialysis following the failure of a kidney transplant. Management of complications and preparation for dialysis are suboptimal in this group. To aid planning, it is desirable to estimate the time to dialysis requirement. The rate of decline in the estimated glomerular filtration rate (eGFR) may be used to this end.
METHODS: This study compared the rate of eGFR decline prior to dialysis commencement between individuals with failing transplants and transplant-naïve patients. The rate of eGFR decline was also compared between transplant recipients with and without graft failure. eGFR was calculated using the four-variable MDRD equation with rate of decline calculated by least squares linear regression.
RESULTS: The annual rate of eGFR decline in incident dialysis patients with graft failure exceeded that of the transplant-naïve incident dialysis patients. In the transplant cohort, the mean annual rate of eGFR decline prior to graft failure was 7.3 ml/min/1.73 m(2) compared to 4.8 ml/min/1.73 m(2) in the transplant-naïve group (p < 0.001) and 0.35 ml/min/1.73 m(2) in recipients without graft failure (p < 0.001). Factors associated with eGFR decline were recipient age, decade of transplantation, HLA mismatch and histological evidence of chronic immunological injury.
CONCLUSIONS: Individuals with graft failure have a rapid decline in eGFR prior to dialysis commencement. To improve outcomes, dialysis planning and management of chronic kidney disease complications should be initiated earlier than in the transplant-naïve population.
Resumo:
A novel approach to the modelling of passive intermodulation (PIM) generation in passive components with distributed weak nonlinearities is outlined. Based upon the formalism of X-parameters, it provides a unified framework for co-design of antenna beamforming networks, filters, combiners, phase shifters and other passive and active devices containing nonlinearities at RF front-end. The effects of discontinuities and complex circuit layouts can be efficiently evaluated with the aid of the equivalent networks of the canonical nonlinear elements. The main concepts are illustrated by examples of numerical simulations of PIM generation in the transmission lines and comparison with the measurement results.
Resumo:
This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has severe drawbacks, being affected both by overfitting and model uncertainty. Two ideas are discussed to overcome these issues: a maximum entropy approach and a Bayesian model averaging approach. Both ideas can be easily applied on top of EM, while the entropy idea can be also implemented in a more sophisticated way, through a dedicated non-linear solver. A vast set of experiments shows that these ideas produce significantly better estimates and inferences than the traditional and widely used maximum (penalized) log-likelihood and maximum a posteriori estimates. In particular, if EM is adopted as optimization engine, the model averaging approach is the best performing one; its performance is matched by the entropy approach when implemented using the non-linear solver. The results suggest that the applicability of these ideas is immediate (they are easy to implement and to integrate in currently available inference engines) and that they constitute a better way to learn Bayesian network parameters.
Resumo:
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.
Resumo:
Compensation for the dynamic response of a temperature sensor usually involves the estimation of its input on the basis of the measured output and model parameters. In the case of temperature measurement, the sensor dynamic response is strongly dependent on the measurement environment and fluid velocity. Estimation of time-varying sensor model parameters therefore requires continuous textit{in situ} identification. This can be achieved by employing two sensors with different dynamic properties, and exploiting structural redundancy to deduce the sensor models from the resulting data streams. Most existing approaches to this problem assume first-order sensor dynamics. In practice, however second-order models are more reflective of the dynamics of real temperature sensors, particularly when they are encased in a protective sheath. As such, this paper presents a novel difference equation approach to solving the blind identification problem for sensors with second-order models. The approach is based on estimating an auxiliary ARX model whose parameters are related to the desired sensor model parameters through a set of coupled non-linear algebraic equations. The ARX model can be estimated using conventional system identification techniques and the non-linear equations can be solved analytically to yield estimates of the sensor models. Simulation results are presented to demonstrate the efficiency of the proposed approach under various input and parameter conditions.
Resumo:
The discovery of P/2010 A2 by the LINEAR survey in January 2010 revealed an object displaying a large trail of material similar in shape to a cometary tail although no central condensation or coma could be detected. The appearance of this object in an asteroidal orbit in the inner main belt attracted attention as a potential new member of the Main Belt Comets class (MBCs) but the discovery of a nucleus, with an estimated diameter of 120 m, around 1500 km away from the trail implied that the extended object we were seeing could be the debris trail from a recent collision rather than the tail of a comet. Due to the low inclination of its orbit, it is difficult to conclude about the nature of P/2010 A2 from Earth-based data only, as different scenarios lead to the same appearance in the orbital configuration at the times of observations. We present here another set of images, acquired from the unique viewing geometry provided by ESA's Rosetta spacecraft en route to comet 67P/Churyumov-Gerasimenko. Albeit faint (22 magnitude), the object could be observed by the high-resolution camera OSIRIS. We used a Finson-Probstein model to simulate the shape of the trail, and estimate the time of emission and β parameter (ratio between solar radiation pressure and gravity) for the dust grains. Simulations were compared to the OSIRIS images and ground based observations acquired at NTT and Palomar telescopes. Thanks to the different phase angle provided by Rosetta, we could reduce the number of solutions to a unique model, leading to the conclusive demonstration that the trail is due to a single event rather than a period of cometary activity.
Resumo:
Asymmetric MarcusHush (AMH) theory is applied for the first time in ionic solvents to model the voltammetric reduction of oxygen in 1-butyl-1-methylpyrrolidinium bis-(trifluoromethylsulfonyl)-imide and of 2-nitrotoluene (2-NT), nitrocyclopentane (NCP), and 1-nitro-butane (BuN) in trihexyltetradecylphosphonium tris(pentafluoroethyl)trifluorophosphate on a gold microdisc electrode. An asymmetry parameter, gamma, was estimated for all systems as -0.4 for the reduction of oxygen and -0.05, 0.25, and 0 +/- 0.05 for the reductions of 2-NT, NCP, and BuN, respectively, which suggests equal force constants of reactants and products in the case of 2-NT and BuN and unequal force constants for oxygen and NCP where the force constants of the oxidized species are greater than the reduced species in the case of oxygen and less than the reduced species in the case of NCP. Previously measured values for a, the Butler-Volmer transfer coefficient, reflect this in each case. Where appreciable asymmetry occurs, AMH theory was seen to parametrize the experimental data better than either Butler-Volmer or symmetric Marcus-Hush theory, allowing additionally the extraction of reorganization energy. This is the first study to provide key physical insights into electrochemical systems in room-temperature ionic liquids using AMH theory, allowing elucidation of the reorganization energies and the relative force constants of the reactants and products in each reaction.
Resumo:
Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.
Resumo:
Mathematical models are useful tools for simulation, evaluation, optimal operation and control of solar cells and proton exchange membrane fuel cells (PEMFCs). To identify the model parameters of these two type of cells efficiently, a biogeography-based optimization algorithm with mutation strategies (BBO-M) is proposed. The BBO-M uses the structure of biogeography-based optimization algorithm (BBO), and both the mutation motivated from the differential evolution (DE) algorithm and the chaos theory are incorporated into the BBO structure for improving the global searching capability of the algorithm. Numerical experiments have been conducted on ten benchmark functions with 50 dimensions, and the results show that BBO-M can produce solutions of high quality and has fast convergence rate. Then, the proposed BBO-M is applied to the model parameter estimation of the two type of cells. The experimental results clearly demonstrate the power of the proposed BBO-M in estimating model parameters of both solar and fuel cells.