64 resultados para Enrico Fermi Atomic Power Plant.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of renewable power sources, distributed generation and the potential for alternative fuelled modes of transport such as electric vehicles has led to concerns over the ability of existing grid systems to facilitate such diverse portfolio mixes in already congested power systems. Internationally the growth in renewable energy sources is driven by government policy targets associated with the uncertainties of fossil fuel supplies, environmental issues and a move towards energy independence. Power grids were traditionally designed as vertically integrated centrally managed entities with fully dispatchable generating plant. Renewable power sources, distributed generation and alternative fuelled vehicles will place these power systems under additional stresses and strains due to their different operational characteristics. Energy storage and smart grid technologies are widely proposed as the tools to integrate these future diverse portfolio mixes within the more conventional power systems. The choice in these technologies is determined not only by their location on the grid system, but by the diversification in the power portfolio mix, the electricity market and the operational demands. This paper presents a high level technical and economic overview of the role and relevance of electrical energy storage and smart grid technologies in the next generation of renewable power systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the behavior of a two-level atom coupled to a one-dimensional, ultracold Fermi gas. The sudden switching on of the scattering between the two entities leads to the loss of any coherence in the initial state of the impurity and we show that the exact dynamics of this process is strongly influenced by the effect of the orthogonality catastrophe within the gas. We highlight the relationship between the Loschmidt echo and the retarded Green's function-typically used to formulate the dynamical theory of the catastrophe-and demonstrate that the effect is reflected in the impurity dynamics. We show that the expected nonexponential decay of the spectral function can be observed using Ramsey interferometry on the two-level atom and comment on finite temperature effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decade there has been a rapid global increase in wind power stimulated by energy and climate policies. However, as wind power is inherently variable and stochastic over a range of time scales, additional system balancing is required to ensure system reliability and stability. This paper reviews the technical, policy and market challenges to achieving ambitious wind power penetration targets in Ireland’s All-Island Grid and examines a number of measures proposed to address these challenges. Current government policy in Ireland is to address these challenges with additional grid reinforcement, interconnection and open-cycle gas plant. More recently smart grid combined with demand side management and electric vehicles have also been presented as options to mitigate the variability of wind power. In addition, the transmission system operators have developed wind farm specific grid codes requiring improved turbine controls and wind power forecasting techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the deployment on GPUs of PROP, a program of the 2DRMP suite which models electron collisions with H-like atoms and ions. Because performance on GPUs is better in single precision than in double precision, the numerical stability of the PROP program in single precision has been studied. The numerical quality of PROP results computed in single precision and their impact on the next program of the 2DRMP suite has been analyzed. Successive versions of the PROP program on GPUs have been developed in order to improve its performance. Particular attention has been paid to the optimization of data transfers and of linear algebra operations. Performance obtained on several architectures (including NVIDIA Fermi) are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth of wind generation in many European countries is pushing power systems into
uncharted territory. As additional wind generators are installed, the changing generation mix may
impact on power system stability. This paper adopts the New England 39 bus system as a test
system for transient stability analysis. Thermal generator models are based on a likely future plant
mix for existing systems, while varying capacities of fixed-speed induction generators (FSIG) and
doubly-fed induction generators (DFIG) are considered. The main emphasis here has been placed
on the impact of wind technology mix on inter-area oscillations following transient grid
disturbances. In addition, both rotor angle stability and transient voltage stability are examined, and
results are compared with current grid code requirements and standards. Results have shown that
FSIGs can reduce tie-line oscillations and improve damping following a transient disturbance, but
they also cause voltage stability and rotor angle stability problems at high wind penetrations. In
contrast, DFIGs can improve both voltage and rotor angle stability, but their power output
noticeably oscillates during disturbances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy generation is expected to continue to increase globally due to renewable energy targets and obligations to reduce greenhouse gas emissions. Some renewable energy sources are variable power sources, for example wind, wave and solar. Energy storage technologies can manage the issues associated with variable renewable generation and align non-dispatchable renewable energy generation with load demands. Energy storage technologies can play different roles in each of the step of the electric power supply chain. Moreover, large scale energy storage systems can act as renewable energy integrators by smoothing the variability. Compressed air energy storage is one such technology. This paper examines the impacts of a compressed air energy storage facility in a pool based wholesale electricity market in a power system with a large renewable energy portfolio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although pumped hydro storage is seen as a strategic key asset by grid operators, financing it is complicated in new liberalised markets. It could be argued that the optimum generation portfolio is now determined by the economic viability of generators based on a short to medium term return on investment. This has meant that capital intensive projects such as pumped hydro storage are less attractive for wholesale electricity companies because the payback periods are too long. In tandem a significant amount of wind power has entered the generation mix, which has resulted in operating and planning integration issues due to wind's inherent uncertain, varying spatial and temporal nature. These integration issues can be overcome using fast acting gas peaking plant or energy storage. Most analysis of wind power integration using storage to date has used stochastic optimisation for power system balancing or arbitrage modelling to examine techno-economic viability. In this research a deterministic dynamic programming long term generation expansion model is employed to optimise the generation mix, total system costs and total carbon dioxide emissions, and unlike other studies calculates reserve to firm wind power. The key finding of this study is that the incentive to build capital-intensive pumped hydro storage to firm wind power is limited unless exogenous market costs come very strongly into play. Furthermore it was demonstrated that reserve increases with increasing wind power showing the importance of ancillary services in future power systems. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super-diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super-diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long-distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north-east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re-constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study assessed the effect of heating vermiculites on extractability of phosphorus, iron, zinc and manganese with respect to their potential agricultural use. Of these elements, phosphorus was from apatite and monazite that occur as accessory minerals in vermiculites. Vermiculites were heated at 15-800 degrees C and digested by acetic acid for extracting phosphorus and diethylene triamine pentaacetic acid (DTPA) for extracting zinc, iron and manganese. Phosphorus in the extract was analysed by a flow injection method while zinc, iron and manganese were measured by atomic absorption spectrometry. The results showed that heating vermiculites to 400 C enhanced extractability of phosphorus from apatite and monazite to a level of 335 mg kg(-1). Further heating to 800 degrees C reduced extractable phosphorus to less than 75 mg kg(-1). Maximum extractable zinc, iron and manganese found were 2.7, 19.1 and 22.9 mg kg(-1), respectively, values that are beneficial and tolerable by most plants. Thus, it was concluded that heating vermiculites to

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a new dual-gas multi-jet HHG source which can be perfectly controlled via phasematching of the long and short trajectory contributions and is applicable for high average power driver laser systems. © 2011 Optical Society of America.