157 resultados para Electromagnetism in medicine.
Resumo:
The number of elderly patients requiring hospitalisation in Europe is rising. With a greater proportion of elderly people in the population comes a greater demand for health services and, in particular, hospital care. Thus, with a growing number of elderly patients requiring hospitalisation competing with non-elderly patients for a fixed (and in some cases, decreasing) number of hospital beds, this results in much longer waiting times for patients, often with a less satisfactory hospital experience. However, if a better understanding of the recurring nature of elderly patient movements between the community and hospital can be developed, then it may be possible for alternative provisions of care in the community to be put in place and thus prevent readmission to hospital. The research in this paper aims to model the multiple patient transitions between hospital and community by utilising a mixture of conditional Coxian phase-type distributions that incorporates Bayes' theorem. For the purpose of demonstration, the results of a simulation study are presented and the model is applied to hospital readmission data from the Lombardy region of Italy.
Resumo:
Background The use of simulation in medical education is increasing, with students taught and assessed using simulated patients and manikins. Medical students at Queen’s University of Belfast are taught advanced life support cardiopulmonary resuscitation as part of the undergraduate curriculum. Teaching and feedback in these skills have been developed in Queen’s University with high-fidelity manikins. This study aimed to evaluate the effectiveness of video compared to verbal feedback in assessment of student cardiopulmonary resuscitation performance Methods Final year students participated in this study using a high-fidelity manikin, in the Clinical Skills Centre, Queen’s University Belfast. Cohort A received verbal feedback only on their performance and cohort B received video feedback only. Video analysis using ‘StudioCode’ software was distributed to students. Each group returned for a second scenario and evaluation 4 weeks later. An assessment tool was created for performance assessment, which included individual skill and global score evaluation. Results One hundred thirty eight final year medical students completed the study. 62 % were female and the mean age was 23.9 years. Students having video feedback had significantly greater improvement in overall scores compared to those receiving verbal feedback (p = 0.006, 95 % CI: 2.8–15.8). Individual skills, including ventilation quality and global score were significantly better with video feedback (p = 0.002 and p < 0.001, respectively) when compared with cohort A. There was a positive change in overall score for cohort B from session one to session two (p < 0.001, 95 % CI: 6.3–15.8) indicating video feedback significantly benefited skill retention. In addition, using video feedback showed a significant improvement in the global score (p < 0.001, 95 % CI: 3.3–7.2) and drug administration timing (p = 0.004, 95 % CI: 0.7–3.8) of cohort B participants, from session one to session two. Conclusions There is increased use of simulation in medicine but a paucity of published data comparing feedback methods in cardiopulmonary resuscitation training. Our study shows the use of video feedback when teaching cardiopulmonary resuscitation is more effective than verbal feedback, and enhances skill retention. This is one of the first studies to demonstrate the benefit of video feedback in cardiopulmonary resuscitation teaching.
Resumo:
The objectives of this study were to determine the fracture toughness of adhesive interfaces between dentine and clinically relevant, thin layers of dental luting cements. Cements tested included a conventional glass-ionomer, F (Fuji I), a resin-modified glass-ionomer, FP (Fuji Plus) and a compomer cement, D (DyractCem). Ten miniature short-bar chevron notch specimens were manufactured for each cement, each comprising a 40 µm thick chevron of lute, between two 1.5 mm thick blocks of bovine dentine, encased in resin composite. The interfacial KIC results (MN/m3/2) were median (range): F; 0.152 (0.14-0.16), FP; 0.306 (0.27-0.37), D; 0.351 (0.31-0.37). Non-parametric statistical analysis showed that the fracture toughness of F was significantly lower (p
Resumo:
Poly-L-lactide (PLLA) is one of the most significant members of a group of polymers regarded as bioresorbable. The degradation of PLLA proceeds through hydrolysis of the ester linkages in the polymer's backbone; however, the time for the complete resorption of orthopaedic devices manufactured from PLLA is known to be in excess of five years in a normal physiological environment. To evaluate the degradation of PLLA in an accelerated time period, PLLA pellets were processed by compression moulding into tensile test specimens, prior to being sterilized by ethylene oxide gas (EtO) and degraded in a phosphate-buffered solution (PBS) at both 50°C and 70°C. On retrieval, at predetermined time intervals, procedures were used to evaluate the material's molecular weight, crystallinity, mechanical strength, and thermal properties. The results from this study suggest that at both 50°C and 70°C, degradation proceeds by a very similar mechanism to that observed at 37°C in vitro and in vivo. The degradation models developed also confirmed the dependence of mass loss, melting temperature, and glass transition temperature (Tg) on the polymer's molecular weight throughout degradation. Although increased temperature appears to be a suitable method for accelerating the degradation of PLLA, relative to its physiological degradation rate, concerns still remain over the validity of testing above the polymer's Tg and the significance of autocatalysis at increased temperatures.