106 resultados para Electrochemistry.
Resumo:
Raman and spreading resistance profiling have been used to analyze defects in germanium caused by hydrogen and helium implants, of typical fluences used in layer transfer applications. Beveling has been used to facilitate probing beyond the laser penetration depth. Results of Raman mapping along the projection area reveal that after post-implant annealing at 400°C, some crystal damage remains, while at 600°C, the crystal damage has been repaired. Helium implants create acceptor states beyond the projected range, and for both hydrogen and helium, 1×1016 acceptors/cm2 remain after 600°C. These are thought to be vacancy-related point defect clusters.
Resumo:
A Time of flight (ToF) mass spectrometer suitable in terms of sensitivity, detector response and time resolution, for application in fast transient Temporal Analysis of Products (TAP) kinetic catalyst characterization is reported. Technical difficulties associated with such application as well as the solutions implemented in terms of adaptations of the ToF apparatus are discussed. The performance of the ToF was validated and the full linearity of the specific detector over the full dynamic range was explored in order to ensure its applicability for the TAP application. The reported TAP-ToF setup is the first system that achieves the high level of sensitivity allowing monitoring of the full 0-200 AMU range simultaneously with sub-millisecond time resolution. In this new setup, the high sensitivity allows the use of low intensity pulses ensuring that transport through the reactor occurs in the Knudsen diffusion regime and that the data can, therefore, be fully analysed using the reported theoretical TAP models and data processing.
Resumo:
There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.
The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.
Resumo:
Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.
Resumo:
Sensitive and specific enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of two illegal synthetic dyes: Methyl Yellow (MY) and Rhodamine B (RB) in food. Polyclonal antibodies were raised against synthesised immunogens and employed in unique direct disequilibrium ELISAs. The time of the assays was only twenty minutes (five minutes for each incubation step with sample and enzyme conjugate and ten minutes with enzyme substrate). The IC50 for MY was in the range 1.4-4.2 ng mL(-1) and for RB 0.1-0.5 ng mL(-1). A simple sample preparation method was developed for the analysis of a range of sauces. In the case of spices a dispersive solid phase extraction was applied to purify the extracts. The testing of twenty samples took approximately one and a half hours (including sample preparation and analysis). Both assays were validated according to the Commission Decision 2002/657/EC criteria for use in sauces and spices. The detection capability for MY in sauces and spices was determined to be less than 15 ng g(-1) and 50 ng g(-1), respectively and for RB, 10 ng g(-1) for both types of food samples. The precision of the developed assays was determined in a repeatability study. The intra-and inter-assay coefficients of variation were less than 25% for both tests and matrix types. The simplicity and performance of both assays indicate that they will be very reliable screening methods for the detection of the illegal dyes MY and RB in a range of food products.
Resumo:
A novel colourimetric 'fizziness' indicator is described which changes colour depending on the headspace pressure of carbon dioxide above a carbonated liquid.
Resumo:
Water-based colourimetric indicator films are shown to have increased operational lifetimes under ambient conditions compared to similar solvent-based counterparts. The response and sensitivity characteristics of a water-based, carbon dioxide-responsive ink are characterised and compared and contrasted to those of a similar solvent-based indicator. The changes in the response characteristics of the ink as a function of the amount of base (sodium hydrogen carbonate) and plasticizer (glycerol) contained in the ink are reported, as are the effects of varying ambient temperature and humidity. The ink is incorporated into a felt tip pen and applied to a number of different substrates, producing a distinct, reversible colour change on all tested surfaces, when a sufficient level of carbon dioxide is present. The possible application of the indicator is discussed briefly.
Resumo:
A new relative-humidity sensitive ink based on methylene blue and urea is described which can utilise the deliquescent nature of urea.
Resumo:
A UVB specific dosimeter is described comprising: a redox dye (2,6-dichloroindophenol, DCIP), a semiconductor ( tin(IV) oxide, SnO2) and a sacrificial electron donor ( glycerol) dispersed in a polymer ( hydroxy ethyl cellulose, HEC) film. The dosimeter is blue in the absence of UVB light but rapidly loses colour on exposure to UVB light. The spectral characteristics of a typical UVB dosimeter film and the mechanism by which the colour change occurs are detailed. DCIP UVB dosimeter films exhibit a response that is related to the irradiance level and duration of UVB exposure, the level of SnO2 present and to a lesser extent the level of glycerol present. The response of the dosimeter appears to be independent of dye concentration and film thickness. Furthermore, DCIP UVB dosimeter films respond to solar simulated light, exhibiting a colour loss that can be simply related to the Minimal Erythemal Dose (MED) exposure for skin type II. As a consequence, such indicators have potential for measuring solar radiation exposure and providing an early warning of erythema for most Caucasian skin (i.e. skin type II).
Resumo:
A brief overview of work carried out by this group on thick (> 1 mu m), optically clear, robust titania films prepared by a sol-gel method, as well as new results regarding these films, are described. Such films are very active as photocatalysts and able to destroy stearic acid with a quantum yield of 0.32%. The activity of such films is largely unaffected by annealing temperatures below 760 degrees C, but is drastically reduced above this temperature. The drop in photocatalyst activity of such films as a function of annealing temperature appears to correlate well with the change in porosity of the films and suggests that the latter parameter is very important in deciding the overall activity of such films. The importance of porosity in semiconductor photocatalysed cold combustion may be due to the effect it has on access of oxygen to the active sites, rather like the effect the position of a fire grate (open or closed) has on the rate of burning, i.e., hot combustion, that takes place in a fireplace.
Resumo:
Communication: Coatings Of Yellow gamma-WO3 are deposited on glass by APCVD of WOCl4 and either ethanol or ethylacetate at 350-450degreesC. The yellow films show significant photoactivity for the destruction of stearic acid, and photoinduced superhydrophilicity. Preparation of blue reduced WO2.92 films from the same reaction at higher substrate temperatures of 500-600degreesC (Figure) is also found to be possible. These films show no photoactivity, but can be converted into the fully stoichiometric photoactive form simply by heating in air.