67 resultados para Elastomer Blends


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicone elastomer systems have previously been shown to offer potential for the sustained release of protein therapeutics. However, the general requirement for the incorporation of large amounts of release enhancing solid excipients to achieve therapeutically effective release rates from these otherwise hydrophobic polymer systems can detrimentally affect the viscosity of the precure silicone elastomer mixture and its curing characteristics. The increase in viscosity necessitates the use of higher operating pressures in manufacture, resulting in higher shear stresses that are often detrimental to the structural integrity of the incorporated protein. The addition of liquid silicones increases the initial tan delta value and the tan delta values in the early stages of curing by increasing the liquid character (G '') of the silicone elastomer system and reducing its elastic character (G'), thereby reducing the shear stress placed on the formulation during manufacture and minimizing the potential for protein degradation. However, SEM analysis has demonstrated that if the liquid character of the silicone elastomer is too high, the formulation will be unable to fill the mold during manufacture. This study demonstrates that incorporation of liquid hydroxy-terminated polydimethylsiloxanes into addition-cure silicone elastomer-covered rod formulations can both effectively lower the viscosity of the precured silicone elastomer and enhance the release rate of the model therapeutic protein bovine serum albumin. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aqueous semi-solid polymeric gels, such as those based on hydroxyethylcellulose (HEC) and polyacrylic acid (e.g. Carbopol®), have a long history of use in vaginal drug delivery. However, despite their ubiquity, they often provide sub-optimal clinical performance, due to poor mucosal retention and limited solubility for poorly water-soluble actives. These issues are particularly pertinent for vaginal HIV microbicides, since many lead candidates are poorly water-soluble and where a major goal is the development of a coitally independent, once daily gel product. In this study, we report the use of a non-aqueous silicone elastomer gel for vaginal delivery of the HIV-1 entry inhibitor maraviroc. In vitro rheological, syringeability and retention studies demonstrated enhanced performance for silicone gels compared with a conventional aqueous HEC gel, while testing of the gels in the slug model confirmed a lack of mucosal irritancy. Pharmacokinetic studies following single dose vaginal administration of a maraviroc silicone gel in rhesus macaques showed higher and sustained MVC levels in vaginal fluid, vaginal tissue and plasma compared with a HEC gel containing the same maraviroc loading. The results demonstrate that non-aqueous silicone gels have potential as a formulation platform for coitally independent vaginal HIV microbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the effects of: the molecular weight ratio of poly(epsilon -caprolactone) (PCL) in blends containing polymer of high (50 000 g mol(-1)) and low (4000 g mol(-1)) molecular weight; the concentration (0, 1, and 5 wt-%) of poly(vinyl pyrrolidone/iodine) (PVP/I); and storage at 30 degreesC and 75% relative humidity; on the thermomechanical properties of films prepared by solvent evaporation from solutions containing both PCL and PVP/I. The tensile properties were found to be statistically dependent on the molecular weight ratio of PCL but not on the concentration of PVP/I. The reductions in tensile strength and elongation at break associated with increasing amounts of low molecular weight PCL were attributed to a reduction in the concentration of chain entanglements. No changes were observed in viscoelastic properties or the glass transition temperature. Following storage there were no changes in the tensile strength, glass transition temperature, or viscoelastic properties of the films; however, significant reductions in elongation at break were observed. It is suggested that this is due to hydrolytic chain scission of amorphous PCL. Inclusion of 5 wt-% PVP/I increased this process in films containing 100:0 and 80:20 high/low molecular weight PCL (but not 60.40), but the extent of this was small. This study highlighted significant aging properties of PCL in a moist atmosphere. Consequently, it is recommended that suitable packaging materials should be employed to control the exposure of PCL films to water during storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To formulate therapeutic proteins into polymeric devices the protein is typically in the solid state, which can be achieved by the process of freeze-drying. However, freeze-drying not only risks denaturing the protein but it can adversely affect the cure characteristics of protein-loaded silicone elastomers. This study demonstrates that a variation in the parameters of the freeze-dryer can significantly affect the residual moisture content of freeze-dried BSA, which in turn has an effect on the bulk density and flow properties of the BSA. The bulk density and flow properties of the BSA subsequently affect the cure characteristics of BSA-loaded silicone elastomers. An increase in the residual moisture content results in the freeze-dried BSA having a decreased bulk density and poor flow properties which can have a detrimental effect on the cure characteristics of a freeze-dried BSA-loaded silicone elastomer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaginal rings are currently being developed for the long-term (at least 30 days) continuous delivery of microbicides against human immunodeficiency virus (HIV). Research to date has mostly focused on devices containing a single antiretroviral compound, exemplified by the 25 mg dapivirine ring currently being evaluated in a Phase III clinical study. However, there is a strong clinical rationale for combining antiretrovirals with different mechanisms of action in a bid to increase breadth of protection and limit the emergence of resistant strains. Here we report the development of a combination antiretroviral silicone elastomer matrix-type vaginal ring for simultaneous controlled release of dapivirine, a non-nucleoside reverse transcriptase inhibitor, and maraviroc, a CCR5-targeted HIV-1 entry inhibitor. Vaginal rings loaded with 25 mg dapivirine and various quantities of maraviroc (50– 400 mg) were manufactured and in vitro release assessed. The 25 mg dapivirine and 100 mg maraviroc formulation was selected for further study. A 24-month pharmaceutical stability evaluation was conducted, indicating good product stability in terms of in vitro release, content assay, mechanical properties and related substances. This combination ring product has now progressed to Phase I clinical testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C-60 and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C-60, molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C-60 solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously reported nonaqueous silicone elastomer gels (SEGs) for sustained vaginal administration of the CCR5-targeted entry inhibitor maraviroc (MVC). Here, we describe chemically modified SEGs (h-SEGs) in which the hydrophobic cyclomethicone component was partially replaced with relatively hydrophilic silanol-terminated polydimethylsiloxanes (st-PDMS). MVC and emtricitabine (a nucleoside reverse transcriptase inhibitor), both currently under evaluation as topical microbicides to counter sexual transmission of human immunodeficiency virus type 1 (HIV-1), were used as model antiretroviral (ARV) drugs. Gel viscosity and in vitro ARV release were significantly influenced by st-PDMS molecular weight and concentration in the h-SEGs. Unexpectedly, gels prepared with lower molecular weight grades of st-PDMS showed higher viscosities. h-SEGs provided enhanced release over 24 h compared with aqueous hydroxyethylcellulose (HEC) gels, did not modify the pH of simulated vaginal fluid (SVF), and were shown to less cytotoxic than standard HEC vaginal gel. ARV solubility increased as st-PDMS molecular weight decreased (i.e., as percentage hydroxyl content increased), helping to explain the in vitro release trends. Dye ingression and SVF dilution studies confirmed the increased hydrophilicity of the h-SEGs. h-SEGs have potential for use in vaginal drug delivery, particularly for ARV-based HIV-1 microbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Following progress of the dapivirine (DPV)-releasing silicone elastomer (SE) vaginal ring (VR) into Phase III clinical studies, there is now interest in developing next-generation rings that additionally provide contraception. Levonorgestrel (LNG) is a safe and effective progestin that is being widely considered for use as a hormonal contraceptive agent in future multipurpose prevention technology (MPT) products. Although LNG has previously been incorporated into various controlled release SE devices, minimal attention has focused on its propensity to irreversibly react with addition cure SE systems. Here, for the first time, we investigate this LNG binding phenomenon and outline strategies for overcoming it.
Methods: VRs containing various loadings of DPV and LNG were manufactured and in vitro release assessed. Different LNG-only SE samples were also prepared to assess the following parameters: (i) addition cure vs. condensation cure SEs; (ii) different types of addition cure SEs; (iii) mixing time, (iv) cure temperature, (v) cure time; and (vi) LNG particle size. After manufacture, the LNG-only samples were assayed for total drug content using a solvent extraction method. The SE curing reaction and the LNG binding reaction was probed using nuclear magnetic resonance (NMR) spectroscopy. Results:
Under certain drug/formulation/processing conditions, LNG was not recoverable from VRs. Further studies using non-ring samples showed that: (a) the phenomenon was only observed with addition cure SEs (and not condensation cure SEs); (b) the extent of binding was dependent upon the type of addition cure SE; (c) micronised LNG showed significantly greater binding than non-micronised LNG; (d) the extent of binding correlated with increased mixing time, cure time and cure temperature.
Conclusions: Careful control of the API characteristics, the SE composition, and the manufacturing conditions will be necessary to establish a practical VR formulation for controlled release of LNG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of Poly ε-caprolactone (PCL) with Poly l-lactic acid (PLLA), Nalidixic Acid (NA) and Polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends.
Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity.
At the higher temperature the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste.