129 resultados para Dynamics of structures
Resumo:
The 1980s saw a wave of African films that aimed to represent, on both local and international screens, a sophisticated pre-colonial Africa, thus debunking notions of the continent as primitive. Toward this aim the films inscribed the conventions of oral performance within their visual styles, denying spectator identification with the protagonists and emphasising the presence of the narrator. However, some critics argued that these films exoticised Africa, while their use of oral performance’s distancing effect echoed the ‘scientific’ distance structured by the ethnographic film, in which African societies were represented as ‘the other’. Souleymane Cissé’s Yeelen exemplifies this tension, transposing into cinematic form oral storytelling techniques in the depiction of a power struggle within the covert cult of the komo, a Bambara initiation society unfamiliar to most non-Bambara viewers. This paper demonstrates how the film negotiates this tension via music, which interpellates the international spectator by eliciting a greater identification with the protagonists than that determined at a visual level, while encoding a verisimilitude to rituals that may otherwise be read as the superstitious practices of ‘the other’. In this way, music and image in Yeelen operate as parallel, though often overlapping, discourses, bridging the gap between the film’s culturally specific narrative and formal components, and its international spectators.
Resumo:
Contrary to a commonly held belief that broiler chickens need more space, there is increasing evidence that these birds are attracted to other birds. Indeed, commercially farmed birds exhibit a range of socially facilitated behaviours, such as increased feeding and preening in response to the presence of other birds. Social facilitation can generate feedback loops, whereby the adoption of a particular behaviour can spread rapidly and suddenly through the population. Here, by measuring the rate at which broiler chickens join and leave a feeding trough as a function of the number of birds already there, we quantify social facilitation. We use these measurements to parameterize a simulation model of chicken feeding behaviour. This model predicts, and further observations of broiler chickens confirm, that social facilitation leads to excitatory and synchronized patterns of group feeding. Such models could prove a powerful tool in understanding how feeding patterns depend on broiler house design.
Resumo:
We investigate the effect of correlated additive and multiplicative Gaussian white noise oil the Gompertzian growth of tumours. Our results are obtained by Solving numerically the time-dependent Fokker-Planck equation (FPE) associated with the stochastic dynamics. In Our numerical approach we have adopted B-spline functions as a truncated basis to expand the approximated eigenfunctions. The eigenfunctions and eigenvalues obtained using this method are used to derive approximate solutions of the dynamics under Study. We perform simulations to analyze various aspects, of the probability distribution. of the tumour cell populations in the transient- and steady-state regimes. More precisely, we are concerned mainly with the behaviour of the relaxation time (tau) to the steady-state distribution as a function of (i) of the correlation strength (lambda) between the additive noise and the multiplicative noise and (ii) as a function of the multiplicative noise intensity (D) and additive noise intensity (alpha). It is observed that both the correlation strength and the intensities of additive and multiplicative noise, affect the relaxation time.
Resumo:
The nonlinear coupling between two magnetic-field-aligned electromagnetic electron-cyclotron (EMEC) waves in plasmas is considered. Evaluating the ponderomotive coupling between the EMEC waves and quasistationary plasma density perturbations, a pair of coupled nonlinear Schrodinger equations (CNLSEs) is obtained. The CNLSEs are then used to investigate the occurrence of modulational instability in magnetized plasmas. Waves in the vicinity of the zero-group-dispersion point are considered, so that the group dispersion terms may either bear the same or different signs. It is found that a stable EMEC wave can be destabilized due to its nonlinear interactions with an unstable one, while a pair of unstable EMEC waves yields an increased instability growth rate. Individually stable waves remain stable while interacting with one another. Stationary nonlinear solutions of the coupled equations are presented. The relevance of our investigation to nonlinear phenomena in space plasmas is discussed. (c) 2005 American Institute of Physics.
Linear and nonlinear dynamics of a dust bicrystal consisting of positive and negative dust particles
Resumo:
A dusty plasma crystalline configuration consisting of charged dust grains of alternating charge sign (.../+/-/+/-/+/...) and mass is considered. Both charge and mass of each dust species are taken to be constant. Considering the equations of longitudinal motion, a dispersion relation for linear longitudinal vibrations is derived from first principles and then analyzed. Two harmonic modes are obtained, namely, an acoustic mode and an inverse-dispersive optic-like one. The nonlinear aspects of acoustic longitudinal dust grain motion are addressed via a generalized Boussinesq (and, alternatively, a generalized Korteweg-de Vries) description. (C) 2005 American Institute of Physics.
Resumo:
The propagation of small amplitude stationary profile nonlinear electrostatic excitations in a pair plasma is investigated, mainly drawing inspiration from experiments on fullerene pair-ion plasmas. Two distinct pair ion species are considered of opposite polarity and same mass, in addition to a massive charged background species, which is assumed to be stationary, given the frequency scale of interest. In the pair-ion context, the third species is thought of as a background defect (e.g. charged dust) component. On the other hand, the model also applies formally to electron-positron-ion (e-p-i) plasmas, if one neglects electron-positron annihilation. A two-fluid plasma model is employed, incorporating both Lorentz and Coriolis forces, thus taking into account the interplay between the gyroscopic (Larmor) frequency ?c and the (intrinsic) plasma rotation frequency O0. By employing a multi-dimensional reductive perturbation technique, a Zakharov-Kuznetsov (ZK) type equation is derived for the evolution of the electric potential perturbation. Assuming an arbitrary direction of propagation, with respect to the magnetic field, we derive the exact form of nonlinear solutions, and study their characteristics. A parametric analysis is carried out, as regards the effect of the dusty plasma composition (background number density), species temperature(s) and the relative strength of rotation to Larmor frequencies. It is shown that the Larmor and mechanical rotation affect the pulse dynamics via a parallel-to-transverse mode coupling diffusion term, which in fact diverges at ?c ? ±2O0. Pulses collapse at this limit, as nonlinearity fails to balance dispersion. The analysis is complemented by investigating critical plasma compositions, in fact near-symmetric (T- ˜ T+) “pure” (n- ˜ n+) pair plasmas, i.e. when the concentration of the 3rd background species is negligible, case in which the (quadratic) nonlinearity vanishes, so one needs to resort to higher order nonlinear theory. A modified ZK equation is derived and analyzed. Our results are of relevance in pair-ion (fullerene) experiments and also potentially in astrophysical environments, e.g. in pulsars.
Resumo:
The spatial dynamics of the optical emission from an array of 50x50 individual microplasma devices is reported. The array is operated in noble gas at atmospheric pressure with an ac voltage. The optical emission is analyzed with phase and space resolution. It has been found that the emission is not continuous over the entire ac period, it occurs only twice in each cycle. Each of the observed emission phases shows a self-pulsing of the discharge, with several bursts of emission of a fixed width and repetition rate. Cross-talk between the individual devices can be observed through spatially resolved measurements. (C) 2008 American Institute of Physics.
Resumo:
Using recently proposed measures for non-Markovianity [H.-P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103, 210401 (2009)], we study the dynamics of a qubit coupled to a spin environment via an energy-exchange mechanism. We show the existence of a point, in the parameter space of the system, where the qubit dynamics is effectively Markovian and that such a point separates two regions with completely different dynamical behaviors. Indeed, our study demonstrates that the qubit evolution can in principle be tuned from a perfectly forgetful one to a deep non-Markovian regime where the qubit is strongly affected by the dynamical backaction of the environmental spins. By means of a theoretical quantum process tomography analysis, we provide a complete and intuitive characterization of the qubit channel.
Resumo:
By means of the time dependent density matrix renormalization group algorithm we study the zero-temperature dynamics of the Von Neumann entropy of a block of spins in a Heisenberg chain after a sudden quench in the anisotropy parameter. In the absence of any disorder the block entropy increases linearly with time and then saturates. We analyse the velocity of propagation of the entanglement as a function of the initial and final anisotropies and compare our results, wherever possible, with those obtained by means of conformal field theory. In the disordered case we find a slower ( logarithmic) evolution which may signal the onset of entanglement localization.