90 resultados para Dual- frequency microstrip antennas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both experimental and theoretical information regarding the scattering and phase conjugate mixing properties of a 2D double-periodic array of wires loaded with nonlinear/linear lumped elements have been provided. An experimental means for assessing the phase conjugate energy production capability for the array is given. These investigations enable identification of the fundamental operational characteristics and underlying mechanisms associated with the production of phase conjugate energy by this type of artificial electromagnetic media. Means for enhancing the phase conjugate energy production capability of the structure by using additional linear lumped loads is examined theoretically and limits on the production of phase conjugate energy established. Theoretical far-field prediction of the behaviour of the structure indicates that retro-directive reflector action as well as negative refraction should be possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for producing a retrodirective (self-tracking) antenna, which can also be operated as a phased (selectively pointed) array through the addition of a simple switching circuit and DC bias offset adjustment, is presented. Phase adjustment to individual antenna elements is shown to be readily carried out by a simple frequency pushing technique, applied to a PLL circuit, thus replacing the requirement for additional phase shifters. Practical results when applied to a ten-element array operating at 2.4 GHz are shown for both modes of operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, construction and measured performance is described of an offset parabolic reflector antenna which employs a reflectarray subreflector to tilt the focused beam from the boresight direction at 94 GHz. An analysis technique based on the method of moments (MoM) is used to design the dual-reflector antenna. Numerical simulations were employed to demonstrate that the high gain pattern of the antenna can be tilted to a predetermined angle by introducing a progressive phase shift across the aperture of the reflectarray. Experimental validation of the approach was made by constructing a 28 × 28 element patch reflectarray which was designed to deflect the beam 5° from the boresight direction in the azimuth plane. The array was printed on a 115 µm thick metal backed quartz wafer and the radiation patterns of the dual reflector antenna were measured from 92.6-95.5 GHz. The experimental results are used to validate the analysis technique by comparing the radiation patterns and the reduction in the peak gain due to beam deflection from the boresight direction. Moreover the results demonstrate that this design concept can be developed further to create an electronically scanned dual reflector antenna by using a tunable reflectarray subreflector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the on-body performance of a range of wearable antennas was investigated by measuring vertical bar S-21 vertical bar path gain between two devices mounted on tissue-equivalent numerical and experimental phantoms, representative of human muscle tissue at 2.45 GHz. In particular, the study focused on the performance of a compact higher mode microstrip patch antenna (HMMPA) with a profile as low as lambda/20. The 5- and 10-mm-high HMMPA prototypes had an impedance bandwidth of 6.7% and 8.6%, respectively, sufficient for the operating requirements of the 2.45-GHz industrial, scientific, and medical (ISM) band and both antennas offered 11-dB higher path gain compared to a fundamental-mode microstrip patch antenna. It was also dernonstrated that a 7-dB improvement in path gain can be obtained for a fundamental-mode patch through the addition of a shortening wall. Notably, on-body HMMPA performance was comparable to a quarter wave monopole antenna on the same size of ground-plane, mounted normal to the tissue surface, indicating that the low-profile and physically more robust antenna is a promising solution for bodyworn antenna applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extension of the pole-zero matching method proposed by Stefano Maci et al. for the analysis of electromagnetic bandgap (EBG) structures composed by lossless dipole-based frequency selective surfaces (FSS) printed on stratified dielectric media, is presented in this paper. With this novel expansion, the dipoles length appears as a variable in the analytical dispersion equation. Thus, modal dispersion curves as a function of the dipoles length can be easily obtained with the only restriction of single Floquet mode propagation. These geometry-dispersion curves are essential for the efficient analysis and design of practical EBG structures, such as waveguides loaded with artificial magnetic conductors (AMC) for miniaturization, or leaky-wave antennas (LWA) using partially reflective surfaces (PRS). These two practical examples are examined in this paper. Results are compared with full-wave 2D and 3D simulations showing excellent agreement, thus validating the proposed technique and illustrating its utility for practical designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design, fabrication, and characterization of single-screen perturbed frequency-selective surfaces (FSS) at infrared frequencies for single and multiband applications are reported. Single-band FSS based on parallel strips have been perturbed by decreasing the length of every second strip within the array in order to achieve dual band-stop responses. The same principle has been extended to design FSS exhibiting tri- and quadreflection bands. In addition, strip FSSs have been perturbed by replacing every second strip for a metallic ring, resulting in dual-band filters with different polarization responses of the bands. These designs have been fabricated on large thin polyimide membranes using sacrificial silicon wafers. An oxide interlayer between the sacrificial silicon wafer and the polyimide membrane is employed to stop the silicon etching and is wet etched subsequently by a solution of ammonium fluoride and acetic acid that does not attack either the polyimide membrane or the aluminium FSS elements. Fourier transform infrared spectroscopy measurements are presented to validate the predicted responses of the fabricated prototypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple V-band radio IQ receiver architecture based around a six-port monolithic microwave integrated circuit (MMIC) is presented. The receiver assembly is designed to cover the 57-65 GHz broadband wireless communication system frequency allocation. The receiver that has an integral 10 dB microstrip antenna consumes 120 mW of dc power and occupies an area of 23 mm x 16 mm. The receiver can be used in heterodyne or in homodyne mode and has the capacity to demodulate quadrature amplitude modulation (QAM), binary phase shift keying (BPSK)/quadrature phase shift keying (QPSK)/offset quadrature phase shift keying (OQPSK). At 60 GHz the receiver can operate over 10 m range for transmitter effective isotropic radiated power (EIRP) of 20 dBm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple design for a low-profile high-gain planar antenna has been presented in the letter. The antenna has the realized gain between 9 and 11 dBi and the return loss better than 10 dB over the 5.6-6.3-GHz frequency band, i.e. 11% bandwidth. A numerical study highlighting effects of key geometrical parameters on the gain and return loss of the antenna has been performed. It has been shown as well that the presented antenna occupies area 20% smaller than a conventional microstrip patch antenna array with a similar gain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new design method that greatly enhances the reflectivity bandwidth and angular stability beyond what is possible with a simple Salisbury screen is described. The performance improvement is obtained from a frequency selective surface (FSS) which is sandwiched between the outermost 377 Ω/square resistive sheet and the ground plane. This is designed to generate additional reflection nulls at two predetermined frequencies by selecting the size of the two unequal length printed dipoles in each unit cell. A multiband Salisbury screen is realised by adjusting the reflection phase of the FSS to position one null above and the other below the inherent absorption band of the structure. Alternatively by incorporating resistive elements midway on the dipoles, it is shown that the three absorption bands can be merged to create a structure with a −10 dB reflectivity bandwidth which is 52% larger and relatively insensitive to incident angle compared to a classical Salisbury screen having the same thickness. CST Microwave Studio was used to optimise the reflectivity performance and simulate the radar backscatter from the structure. The numerical results are shown to be in close agreement with bistatic measurements for incident angles up to 40° over the frequency range 5.4−18 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method of dielectric-constant measurement is developed. The dielectric constant epsilon(r) RF/microwave substrate is extracted by combining the microstrip ring resonator measurement with Ansoft HFSS electromagnetic simulation software. The developed method has two advantages: (i) characterization of dielectric constant versus multiple frequency points, and (ii) compatibility with electronics design automation (EDA) software tools. This characterization method can reduce the design cycle of microwave circuits and devices. (C) 2004 Wiley Periodicals, Inc.