52 resultados para Double Electron-Electron Resonance (DEER)


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In open-shell atoms and ions, processes such as photoionization, combination (Raman) scattering, electron scattering, and recombination are often mediated by many-electron compound resonances. We show that their interference (neglected in the independent-resonance approximation) leads to a coherent contribution, which determines the energy-averaged total cross sections of electron- and photon-induced reactions obtained using the optical theorem. In contrast, the partial cross sections (e.g., electron recombination or photon Raman scattering) are dominated by the stochastic contributions. Thus, the optical theorem provides a link between the stochastic and coherent contributions of the compound resonances. Similar conclusions are valid for reactions via compound states in molecules and nuclei.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Plans to employ tungsten in the divertor region of the International Thermonuclear Experimental Reactor require radiative and collisional data for modelling x-ray emissions of highly ionized stages of tungsten. In an earlier paper, we reported on the results of fully relativistic R -matrix calculations for W 46+ that included the effects of radiation damping on the resonance contributions. In this paper, we present the results of similar fully relativistic, radiatively damped R -matrix calculations for W 44+ and W 45+ . Radiation damping is found to be small for W 45+ , but is appreciable for many of the excitations from the ground and metastable levels of W 44+ . Rates from the present calculations will be combined with those from the calculations for W 46+ and employed for collisional-radiative modelling for these ions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Electron-impact excitation data for He-like ions are of significant importance for diagnostic applications to both laboratory and astrophysical plasmas. Here we report on the first fully relativistic R -matrix calculations with radiation damping for the He-like ions Fe 24+ and Kr 34+ . Effective collision strengths for these two ions have been determined with and without damping over a wide temperature range for all transitions between the 49 levels through n = 5. We find that damping has a pronounced effect on the effective collision strengths for excitation to some of the low-lying levels, but its effect on excitation to the vast majority of levels is small. At the energy of a resonance peak, we also investigate the effect of radiation damping on the angular distribution of scattered electrons. Finally, we compare our results for Fe 24+ with an earlier intermediate coupling frame transformation R -matrix calculation with radiation damping by Whiteford et al ( J. Phys. B: At. Mol. Opt. Phys. 34 3179) and find good agreement, especially for excitation to the lower levels.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this study we calculate the electron-impact uncertainties in atomic data for direct ionization and recombination and investigate the role of these uncertainties on spectral diagnostics. We outline a systematic approach to assigning meaningful uncertainties that vary with electron temperature. Once these uncertainty parameters have been evaluated, we can then calculate the uncertainties on key diagnostics through a Monte Carlo routine, using the Astrophysical Emission Code (APEC) [Smith et al. 2001]. We incorporate these uncertainties into well known temperature diagnostics, such as the Lyman alpha versus resonance line ratio and the G ratio. We compare these calculations to a study performed by [Testa et al. 2004], where significant discrepancies in the two diagnostic ratios were observed. We conclude that while the atomic physics uncertainties play a noticeable role in the discrepancies observed by Testa, they do not explain all of them. This indicates that there is another physical process occurring in the system that is not being taken into account. This work is supported in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851 and by the Smithsonian Institution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We report on a nonperturbative R-matrix with PseudoStates (RMPS) calculation for the electron-impact ionization cross section of the ground state of Al2+. We include both the direct ionization of the 3s and 2p subshells and the indirect ionization from the 2p subshell. This calculation, thus, includes extra decay channels for the indirect-ionization process not included in previous RMPS calculations. This lowers the total-ionization cross section, resulting in closer agreement with the most recent experimental measurements. This calculation also shows better agreement with the position and height of the resonant-excitation double autoionization features seen in the experiment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Configuration-average distorted-wave calculations are carried out for the electron-impact single ionization of Xe 24 + . Contributions are included from direct ionization of the 3s, 3p, 3d and 4s subshells and from indirect ionization via 3s → nl , 3p → nl and 3d → nl excitations followed by autoionization. Branching ratios are found for single versus double ionization of the 3s and 3p subshells and for autoionization versus radiative decay of all 3 l → nl excitations. Additional distorted-wave and R -matrix calculations find resonant-capture double-autoionization contributions to be quite small. The total ionization cross section for Xe 24 + is found to be dominated by indirect excitation–autoionization contributions, especially near the single-ionization threshold. An approximate 15% reduction in the total ionization cross section is found due to the radiative decays included in the branching ratios.