77 resultados para Dose-Response Relationship, Immunologic
Resumo:
Radionuclide therapy for cancer is undergoing a renaissance, with a wide range of radionuclide and clinical delivery systems currently under investigation. Dosimetry at the cellular and sub-cellular level is complex with inhomogeneity and incomplete targeting of all cells such that some tumor cells will receive little or no direct radiation energy. There is now sufficient preclinical evidence of a Bystander response which can modulate the biology of these un-irradiated cells with current research demonstrating both protective and inhibitory responses. Dependence upon fraction of irradiated cells has also been found and the presence of functional gap junctions appears to be import for several Bystander responses. The selection of either high or low LET radionuclides may be critical. While low LET radionuclides appear to have a Bystander response proportional to dose, the dose-response from high LET radionuclides are more complex. In media transfer experiments a "U" shaped response curve has been demonstrated for high LET treatments. However this "U" shaped response has not been seen with co-culture experiments and its relevance remains uncertain. For high LET treatments there is a suggestion that dose rate effects may also be important with inhibitory effects noted with 125I labelling study and a stimulatory seen with 123I labelling in one study.© 2013 Brady, O’Sullivan and Prise.
Resumo:
Invasion ecology urgently requires predictive methodologies that can forecast the ecological impacts of existing, emerging and potential invasive species. We argue that many ecologically damaging invaders are characterised by their more efficient use of resources. Consequently, comparison of the classical ‘functional response’ (relationship between resource use and availability) between invasive and trophically analogous native species may allow prediction of invader ecological impact. We review the utility of species trait comparisons and the history and context of the use of functional responses in invasion ecology, then present our framework for the use of comparative functional responses. We show that functional response analyses, by describing the resource use of species over a range of resource availabilities, avoids many pitfalls of ‘snapshot’ assessments of resource use. Our framework demonstrates how comparisons of invader and native functional responses, within and between Type II and III functional responses, allow testing of the likely population-level outcomes of invasions for affected species. Furthermore, we describe how recent studies support the predictive capacity of this method; for example, the invasive ‘bloody red shrimp’ Hemimysis anomala shows higher Type II functional responses than native mysids and this corroborates, and could have predicted, actual invader impacts in the field. The comparative functional response method can also be used to examine differences in the impact of two or more invaders, two or more populations of the same invader, and the abiotic (e.g. temperature) and biotic (e.g. parasitism) context-dependencies of invader impacts. Our framework may also address the previous lack of rigour in testing major hypotheses in invasion ecology, such as the ‘enemy release’ and ‘biotic resistance’ hypotheses, as our approach explicitly considers demographic consequences for impacted resources, such as native and invasive prey species. We also identify potential challenges in the application of comparative functional responses in invasion ecology. These include incorporation of numerical responses, multiple predator effects and trait-mediated indirect interactions, replacement versus non-replacement study designs and the inclusion of functional responses in risk assessment frameworks. In future, the generation of sufficient case studies for a meta-analysis could test the overall hypothesis that comparative functional responses can indeed predict invasive species impacts.
Resumo:
Nasal congestion is one of the most troublesome symptoms of many upper airways diseases. We characterized the effect of selective α2c-adrenergic agonists in animal models of nasal congestion. In porcine mucosa tissue, compound A and compound B contracted nasal veins with only modest effects on arteries. In in vivo experiments, we examined the nasal decongestant dose-response characteristics, pharmacokinetic/pharmacodynamic relationship, duration of action, potential development of tolerance, and topical efficacy of α2c-adrenergic agonists. Acoustic rhinometry was used to determine nasal cavity dimensions following intranasal compound 48/80 (1%, 75 µl). In feline experiments, compound 48/80 decreased nasal cavity volume and minimum cross-sectional areas by 77% and 40%, respectively. Oral administration of compound A (0.1-3.0 mg/kg), compound B (0.3-5.0 mg/kg), and d-pseudoephedrine (0.3 and 1.0 mg/kg) produced dose-dependent decongestion. Unlike d-pseudoephedrine, compounds A and B did not alter systolic blood pressure. The plasma exposure of compound A to produce a robust decongestion (EC(80)) was 500 nM, which related well to the duration of action of approximately 4.0 hours. No tolerance to the decongestant effect of compound A (1.0 mg/kg p.o.) was observed. To study the topical efficacies of compounds A and B, the drugs were given topically 30 minutes after compound 48/80 (a therapeutic paradigm) where both agents reversed nasal congestion. Finally, nasal-decongestive activity was confirmed in the dog. We demonstrate that α2c-adrenergic agonists behave as nasal decongestants without cardiovascular actions in animal models of upper airway congestion.
Resumo:
OBJECTIVES: Results from studies examining the association between alcohol consumption and the risk of Barrett's esophagus have been inconsistent. We assessed the risk of Barrett's esophagus associated with total and beverage-specific alcohol consumption by pooling individual participant data from five case–control studies participating in the international Barrett's and Esophageal Adenocarcinoma Consortium.
METHODS: For analysis, there were 1,282 population-based controls, 1,418 controls with gastroesophageal reflux disease (GERD), and 1,169 patients with Barrett's esophagus (cases). We estimated study-specific odds ratios (ORs) and 95% confidence intervals (95% CI) using multivariable logistic regression models adjusted for age, sex, body mass index (BMI), education, smoking status, and GERD symptoms. Summary risk estimates were obtained by random-effects models. We also examined potential effect modification by sex, BMI, GERD symptoms, and cigarette smoking.
RESULTS: For comparisons with population-based controls, although there was a borderline statistically significant inverse association between any alcohol consumption and the risk of Barrett's esophagus (any vs. none, summary OR=0.77, 95% CI=0.60–1.00), risk did not decrease in a dose-response manner (Ptrend=0.72). Among alcohol types, wine was associated with a moderately reduced risk of Barrett's esophagus (any vs. none, OR=0.71, 95% CI=0.52–0.98); however, there was no consistent dose–response relationship (Ptrend=0.21). We found no association with alcohol consumption when cases were compared with GERD controls. Similar associations were observed across all strata of BMI, GERD symptoms, and cigarette smoking.
CONCLUSIONS: Consistent with findings for esophageal adenocarcinoma, we found no evidence that alcohol consumption increases the risk of Barrett's esophagus.
Resumo:
Background. Org 25969 is a cyclodextrin compound designed to reverse a rocuronium-induced neuromuscular block. The aim of this study was to explore the efficacy, dose-response relation and safety of Org 25969 for reversal of a prolonged rocuronium-induced neuromuscular block. Methods. Thirty anaesthetised adult patients received rocuronium 0.6mg kg as an initial dose followed by increments to maintain a deep block at level of
Resumo:
The use of microbeam approaches has been a major advance in probing the relevance of bystander and adaptive responses in cell and tissue models. Our own studies at the Gray Cancer Institute have used both a charged particle microbeam, producing protons and helium ions and a soft X-ray microprobe, delivering focused carbon-K, aluminium-K and titanium-K soft X-rays. Using these techniques we have been able to build up a comprehensive picture of the underlying differences between bystander responses and direct effects in cell and tissue-like models. What is now clear is that bystander dose-response relationships, the underlying mechanisms of action and the targets involved are not the same as those observed for direct irradiation of DNA in the nucleus. Our recent studies have shown bystander responses even when radiation is deposited away from the nucleus in cytoplasmic targets. Also the interaction between bystander and adaptive responses may be a complex one related to dose, number of cells targeted and time interval.
Resumo:
The delivery of spatially modulated radiation fields has been shown to impact on in vitro cell survival responses. To study the effect of modulated fields on cell survival, dose response curves were determined for human DU-145 prostate, T98G glioma tumour cells and normal primary AGO-1552 fibroblast cells exposed to modulated and non-modulated field configurations delivered using a 6 MV Linac with multi-leaf collimator. When exposed to uniform fields delivered as a non-modulated or modulated configuration, no significant differences in survival were observed with the exception of DU-145 cells at a dose of 8 Gy (p = 0.024). Survival responses were determined for exposure to non-uniform-modulated beams in DU-145 and T98G and showed no deviation from the survival response observed following uniform non-modulated exposures. The results of these experiments indicate no major deviation in response to modulated fields compared to uniform exposures.
Resumo:
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24), The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this. (C) 2000 by Radiation Research Society.
Resumo:
We have investigated the effects of decreased levels of the complex between glycoprotein VI (GPVI) and the Fc receptor gamma-chain (FcRgamma) on responses to collagen and GPVI-specific ligands in murine platelets. We show that levels of GPVI-FcRgamma of the order of 50 % and 20 % of wild-type levels caused 2- and 5-fold shifts to the right respectively in the dose-response curve for aggregation in response to collagen, the snake toxin convulxin and the monoclonal antibody JAQ1. In addition, there is a delay in the onset of aggregation in response to collagen. In contrast, the stimulation of protein tyrosine phosphorylation by collagen (as measured after 150 s) and adhesion to a collagen-coated surface under static conditions were unaffected in platelets with 50 % and 20 % of wild-type levels of GPVI. In contrast, responses to a collagen-related peptide (CRP), made up of repeat glycine-proline-hydroxyproline motifs, were markedly inhibited and abolished in platelets expressing 50 % and 20 % of wild-type levels of GPVI respectively. We suggest that the marked effect of a reduction in GPVI levels on the CRP-induced activation of platelets is due to the multivalent nature of CRP and the fact that GPVI is its sole receptor on platelets. Thus it appears that the interaction of CRP with GPVI is determined by a combination of affinity and avidity. The observation that collagen does not behave like CRP in platelets expressing reduced levels of GPVI, even in the combined presence of blocking antibodies against integrin alpha2beta1 and GPV, suggests that collagen has a greater affinity than CRP for GPVI, and/or that other receptors are involved in its binding to platelets. The clinical significance of these results is discussed.
Resumo:
A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society
Resumo:
Laser-driven proton and ion acceleration is an area of increasing research interest given the recent development of short pulse-high intensity lasers. Several groups have reported experiments to understand whether a laser-driven beam can be applied for radiobiological purposes and in each of these, the method to obtain dose and spectral analysis was slightly different. The difficulty with these studies is that the very large instantaneous dose rate is a challenge for commonly used dosimetry techniques, so that other more sophisticated procedures need to be explored. This paper aims to explain a method for obtaining the energetic spectrum and the dose of a laser-driven proton beam irradiating a cell dish used for radiobiology studies. The procedure includes the use of a magnet to have charge and energy separation of the laser-driven beam, Gafchromic films to have information on dose and partially on energy, and a Monte Carlo code to expand the measured data in order to obtain specific details of the proton spectrum on the cells. Two specific correction factors have to be calculated: one to take into account the variation of the dose response of the films as a function of the proton energy and the other to obtain the dose to the cell layer starting from the dose measured on the films. This method, particularly suited to irradiation delivered in a single laser shot, can be applied in any other radiobiological experiment performed with laser-driven proton beams, with the only condition that the initial proton spectrum has to be at least roughly known. The method was tested in an experiment conducted at Queen's University of Belfast using the TARANIS laser, where the mean energy of the protons crossing the cells was between 0.9 and 5 MeV, the instantaneous dose rate was estimated to be close to 10(9) Gy s(-1) and doses between 0.8 and 5 Gy were delivered to the cells in a single laser shot. The combination of the applied corrections modified the initial estimate of dose by up to 40%.
Resumo:
alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.
Resumo:
Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy. There is a paucity of literature investigating the radiobiological consequences of intrafraction motion and concerns regarding the impact of movement when applied to cancer cell lines in vitro exist. We have addressed this by developing a novel model which accurately replicates respiratory motion under experimental conditions to allow clinically relevant irradiation of cell lines. A bespoke phantom and motor driven moving platform was adapted to accommodate flasks containing medium and cells in order to replicate respiratory motion using varying frequencies and amplitude settings. To study this effect on cell survival in vitro, dose response curves were determined for human lung cancer cell lines H1299 and H460 exposed to a uniform 6 MV radiation field under moving or stationary conditions. Cell survival curves showed no significant difference between irradiation at different dose points for these cell lines in the presence or absence of motion. These data indicate that motion of unshielded cells in vitro does not affect cell survival in the presence of uniform irradiation. This model provides a novel research platform to investigate the radiobiological consequences of respiratory motion in radiotherapy.
Resumo:
A novel technique is described for the identification and quantification of environmental pollutants based on toxicity fingerprinting with a metabolic lux-marked bacterial biosensor. This method involved characterizing the toxicity-based responses of the biosensor to seven calibration pollutants as acute temporal-dose response fingerprints. An algorithm is described to allow comparisons of responses of an unknown pollutant to be made against the calibration data. This is based on predicting pollutant concentration at each of six different time points over the course of a 5-min assay. If the prediction is consistent between the unknown pollutant and a calibration pollutant at the 95% test level, this is considered to be a positive identification. All seven calibration pollutants could be successfully distinguished from each other with this technique. Environmental samples, individually spiked with single concentrations of pollutants, were compared in this way against the calibration pollutants. An 83% identification success was achieved, with no false positives at the 95% test level. This is a simple and rapid technique that potentially can be applied to monitoring of industrial wastewater or as a screening tool for regulators.
Resumo:
Background Dietary exposure to high levels of the fungal toxin, aflatoxin, occurs in West Africa, where long-term crop storage facilitates fungal growth.
Methods We conducted a cross-sectional study in Benin and Togo to investigate aflatoxin exposure in children around the time of weaning and correlated these data with food consumption, socioeconomic status, agro-ecological zone of residence, and anthropometric measures. Blood samples from 479 children (age 9 months to 5 years) from 16 villages in four agro-ecological zones were assayed for aflatoxin-albumin adducts (AF-alb) as a measure of recent past (2-3 months) exposure.
Results Aflatoxin-albumin adducts were detected in 475/479 (99%) children (geometric mean 32.8 pg/mg, 95% CI: 25.3-42.5). Adduct levels varied markedly across agro-ecological zones with mean levels being approximately four times higher in the central than in the northern region. The AF-alb level increased with age up to 3 years, and within the 1-3 year age group was significantly (P=0.0001) related to weaning status; weaned children had approximately twofold higher mean AF-alb adduct levels (38 pg AF-lysine equivalents per mg of albumin [pg/mg]) than those receiving a mixture of breast milk and solid foods after adjustment for age, sex, agro-ecological zone, and socioeconomic status. A higher frequency of maize consumption, but not groundnut consumption, by the child in the preceding week was correlated with higher AF-alb adduct level. We previously reported that the prevalence of stunted growth (height for age Z-score HAZ) and being underweight (weight for age Z-score WAZ) were 33% and 29% respectively by World Health Organziation criteria. Children in these two categories had 30-40% higher mean AF-alb levels than the remainder of the children and strong dose- response relationships were observed between AF-alb levels and the extent of stunting and being underweight.
Conclusions Exposure to this common toxic contaminant of West African food increases markedly following weaning and exposure early in life is associated with reduced growth. These observations reinforce the need for aflatoxin exposure intervention strategies within high-risk countries, possibly targeted specifically at foods used in the post-weaning period.