90 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
This paper presents two new approaches for use in complete process monitoring. The firstconcerns the identification of nonlinear principal component models. This involves the application of linear
principal component analysis (PCA), prior to the identification of a modified autoassociative neural network (AAN) as the required nonlinear PCA (NLPCA) model. The benefits are that (i) the number of the reduced set of linear principal components (PCs) is smaller than the number of recorded process variables, and (ii) the set of PCs is better conditioned as redundant information is removed. The result is a new set of input data for a modified neural representation, referred to as a T2T network. The T2T NLPCA model is then used for complete process monitoring, involving fault detection, identification and isolation. The second approach introduces a new variable reconstruction algorithm, developed from the T2T NLPCA model. Variable reconstruction can enhance the findings of the contribution charts still widely used in industry by reconstructing the outputs from faulty sensors to produce more accurate fault isolation. These ideas are illustrated using recorded industrial data relating to developing cracks in an industrial glass melter process. A comparison of linear and nonlinear models, together with the combined use of contribution charts and variable reconstruction, is presented.
Resumo:
Recently, several belief negotiation models have been introduced to deal with the problem of belief merging. A negotiation model usually consists of two functions: a negotiation function and a weakening function. A negotiation function is defined to choose the weakest sources and these sources will weaken their point of view using a weakening function. However, the currently available belief negotiation models are based on classical logic, which makes them difficult to define weakening functions. In this paper, we define a prioritized belief negotiation model in the framework of possibilistic logic. The priority between formulae provides us with important information to decide which beliefs should be discarded. The problem of merging uncertain information from different sources is then solved by two steps. First, beliefs in the original knowledge bases will be weakened to resolve inconsistencies among them. This step is based on a prioritized belief negotiation model. Second, the knowledge bases obtained by the first step are combined using a conjunctive operator which may have a reinforcement effect in possibilistic logic.
Resumo:
This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.
Resumo:
In this letter, a standard postnonlinear blind source separation algorithm is proposed, based on the MISEP method, which is widely used in linear and nonlinear independent component analysis. To best suit a wide class of postnonlinear mixtures, we adapt the MISEP method to incorporate a priori information of the mixtures. In particular, a group of three-layered perceptrons and a linear network are used as the unmixing system to separate sources in the postnonlinear mixtures, and another group of three-layered perceptron is used as the auxiliary network. The learning algorithm for the unmixing system is then obtained by maximizing the output entropy of the auxiliary network. The proposed method is applied to postnonlinear blind source separation of both simulation signals and real speech signals, and the experimental results demonstrate its effectiveness and efficiency in comparison with existing methods.
Resumo:
This paper introduces a recursive rule base adjustment to enhance the performance of fuzzy logic controllers. Here the fuzzy controller is constructed on the basis of a decision table (DT), relying on membership functions and fuzzy rules that incorporate heuristic knowledge and operator experience. If the controller performance is not satisfactory, it has previously been suggested that the rule base be altered by combined tuning of membership functions and controller scaling factors. The alternative approach proposed here entails alteration of the fuzzy rule base. The recursive rule base adjustment algorithm proposed in this paper has the benefit that it is computationally more efficient for the generation of a DT, and advantage for online realization. Simulation results are presented to support this thesis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Modelling and control of nonlinear dynamical systems is a challenging problem since the dynamics of such systems change over their parameter space. Conventional methodologies for designing nonlinear control laws, such as gain scheduling, are effective because the designer partitions the overall complex control into a number of simpler sub-tasks. This paper describes a new genetic algorithm based method for the design of a modular neural network (MNN) control architecture that learns such partitions of an overall complex control task. Here a chromosome represents both the structure and parameters of an individual neural network in the MNN controller and a hierarchical fuzzy approach is used to select the chromosomes required to accomplish a given control task. This new strategy is applied to the end-point tracking of a single-link flexible manipulator modelled from experimental data. Results show that the MNN controller is simple to design and produces superior performance compared to a single neural network (SNN) controller which is theoretically capable of achieving the desired trajectory. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A novel methodology is proposed for the development of neural network models for complex engineering systems exhibiting nonlinearity. This method performs neural network modeling by first establishing some fundamental nonlinear functions from a priori engineering knowledge, which are then constructed and coded into appropriate chromosome representations. Given a suitable fitness function, using evolutionary approaches such as genetic algorithms, a population of chromosomes evolves for a certain number of generations to finally produce a neural network model best fitting the system data. The objective is to improve the transparency of the neural networks, i.e. to produce physically meaningful
Resumo:
Query processing over the Internet involving autonomous data sources is a major task in data integration. It requires the estimated costs of possible queries in order to select the best one that has the minimum cost. In this context, the cost of a query is affected by three factors: network congestion, server contention state, and complexity of the query. In this paper, we study the effects of both the network congestion and server contention state on the cost of a query. We refer to these two factors together as system contention states. We present a new approach to determining the system contention states by clustering the costs of a sample query. For each system contention state, we construct two cost formulas for unary and join queries respectively using the multiple regression process. When a new query is submitted, its system contention state is estimated first using either the time slides method or the statistical method. The cost of the query is then calculated using the corresponding cost formulas. The estimated cost of the query is further adjusted to improve its accuracy. Our experiments show that our methods can produce quite accurate cost estimates of the submitted queries to remote data sources over the Internet.
Resumo:
We present a practical approach to Natural Language Generation (NLG) for spoken dialogue systems. The approach is based on small template fragments (mini-templates). The system’s object architecture facilitates generation of phrases across pre-defined business domains and registers, as well as into different languages. The architecture simplifies NLG in well-understood application contexts, while providing the flexibility for a developer and for the system, to vary linguistic output according to dialogue context, including any intended affective impact. Mini-templates are used with a suite of domain term objects, resulting in an NLG system (MINTGEN – MINi-Template GENerator) whose extensibility and ease of maintenance is enhanced by the sparsity of information devoted to individual domains. The system also avoids the need for specialist linguistic competence on the part of the system maintainer.
Resumo:
The United States Supreme Court case of 1991, Feist Publications, Inc. v. Rural Tel. Service Co., continues to be highly significant for property in data and databases, but remains poorly understood. The approach taken in this article contrasts with previous studies. It focuses upon the “not original” rather than the original. The delineation of the absence of a modicum of creativity in selection, coordination, and arrangement of data as a component of the not original forms a pivotal point in the Supreme Court decision. The author also aims at elucidation rather than critique, using close textual exegesis of the Supreme Court decision. The results of the exegesis are translated into a more formal logical form to enhance clarity and rigor.
The insufficiently creative is initially characterized as “so mechanical or routine.” Mechanical and routine are understood in their ordinary discourse senses, as a conjunction or as connected by AND, and as the central clause. Subsequent clauses amplify the senses of mechanical and routine without disturbing their conjunction.
The delineation of the absence of a modicum of creativity can be correlated with classic conceptions of computability. The insufficiently creative can then be understood as a routine selection, coordination, or arrangement produced by an automatic mechanical procedure or algorithm. An understanding of a modicum of creativity and of copyright law is also indicated.
The value of the exegesis and interpretation is identified as its final simplicity, clarity, comprehensiveness, and potential practical utility.
Resumo:
The decision of the U.S. Supreme Court in 1991 in Feist Publications, Inc. v. Rural Tel. Service Co. affirmed originality as a constitutional requirement for copyright. Originality has a specific sense and is constituted by a minimal degree of creativity and independent creation. The not original is the more developed concept within the decision. It includes the absence of a minimal degree of creativity as a major constituent. Different levels of absence of creativity also are distinguished, from the extreme absence of creativity to insufficient creativity. There is a gestalt effect of analogy between the delineation of the not original and the concept of computability. More specific correlations can be found within the extreme absence of creativity. "[S]o mechanical" in the decision can be correlated with an automatic mechanical procedure and clauses with a historical resonance with understandings of computability as what would naturally be regarded as computable. The routine within the extreme absence of creativity can be regarded as the product of a computational process. The concern of this article is with rigorously establishing an understanding of the extreme absence of creativity, primarily through the correlations with aspects of computability. The understanding established is consistent with the other elements of the not original. It also revealed as testable under real-world conditions. The possibilities for understanding insufficient creativity, a minimal degree of creativity, and originality, from the understanding developed of the extreme absence of creativity, are indicated.
Resumo:
The number of clinical trials reports is increasing rapidly due to a large number of clinical trials being conducted; it, therefore, raises an urgent need to utilize the clinical knowledge contained in the clinical trials reports. In this paper, we focus on the qualitative knowledge instead of quantitative knowledge. More precisely, we aim to model and reason with the qualitative comparison (QC for short) relations which consider qualitatively how strongly one drug/therapy is preferred to another in a clinical point of view. To this end, first, we formalize the QC relations, introduce the notions of QC language, QC base, and QC profile; second, we propose a set of induction rules for the QC relations and provide grading interpretations for the QC bases and show how to determine whether a QC base is consistent. Furthermore, when a QC base is inconsistent, we analyze how to measure inconsistencies among QC bases, and we propose different approaches to merging multiple QC bases. Finally, a case study on lowering intraocular pressure is conducted to illustrate our approaches.