54 resultados para Dissipative Operator
Resumo:
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We showthat in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Resumo:
Mapped topographic features are important for understanding processes that sculpt the Earth’s surface. This paper presents maps that are the primary product of an exercise that brought together 27 researchers with an interest in landform mapping wherein the efficacy and causes of variation in mapping were tested using novel synthetic DEMs containing drumlins. The variation between interpreters (e.g. mapping philosophy, experience) and across the study region (e.g. woodland prevalence) opens these factors up to assessment. A priori known answers in the synthetics increase the number and strength of conclusions that may be drawn with respect to a traditional comparative study. Initial results suggest that overall detection rates are relatively low (34–40%), but reliability of mapping is higher (72–86%). The maps form a reference dataset.
Resumo:
We show that Kraus' property $ S_{\sigma }$ is preserved under taking weak* closed sums with masa-bimodules of finite width and establish an intersection formula for weak* closed spans of tensor products, one of whose terms is a masa-bimodule of finite width. We initiate the study of the question of when operator synthesis is preserved under the formation of products and prove that the union of finitely many sets of the form $ \kappa \times \lambda $, where $ \kappa $ is a set of finite width while $ \lambda $ is operator synthetic, is, under a necessary restriction on the sets $ \lambda $, again operator synthetic. We show that property $ S_{\sigma }$ is preserved under spatial Morita subordinance.
Resumo:
We express various sets of quantum correlations studied in the theoretical physics literature in terms of different tensor products of operator systems of discrete groups. We thus recover earlier results of Tsirelson and formulate a new approach for the study of quantum correlations. To do this we formulate a general framework for the study of operator systems arising from discrete groups. We study in detail the operator system of the free group Fn on n generators, as well as the operator systems of the free products of finitely many copies of the two-element group Z2. We examine various tensor products of group operator systems, including the minimal, the maximal, and the commuting tensor products. We introduce a new tensor product in the category of operator systems and formulate necessary and sufficient conditions for its equality to the commuting tensor product in the case of group operator systems.
Resumo:
We establish an unbounded version of Stinespring's Theorem and a lifting result for Stinespring representations of completely positive modular maps defined on the space of all compact operators. We apply these results to study positivity for Schur multipliers. We characterise positive local Schur multipliers, and provide a description of positive local Schur multipliers of Toeplitz type. We introduce local operator multipliers as a non-commutative analogue of local Schur multipliers, and characterise them extending both the characterisation of operator multipliers from [16] and that of local Schur multipliers from [27]. We provide a description of the positive local operator multipliers in terms of approximation by elements of canonical positive cones.
Resumo:
We define several new types of quantum chromatic numbers of a graph and characterize them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.
Resumo:
The linear and nonlinear properties of small-amplitude electron-acoustic solitary waves are investigated via the fluid dynamical approach. A three-component plasma is considered, composed of hot electrons, cold electrons, and ions (considered stationary at the scale of interest). A dissipative (wave damping) effect is assumed due to electron-neutral collisions. The background (hot) electrons are characterized by an energetic (excessively superthermal) population and are thus modeled via a κ-type nonthermal distribution. The linear characteristics of electron-acoustic excitations are discussed, for different values of the plasma parameters (superthermality index κ and cold versus hot electron population concentration β). Large wavelengths (beyond a threshold value) are shown to be overdamped. The reductive perturbation technique is used to derive a dissipative Korteweg de-Vries (KdV) equation for small-amplitude electrostatic potential disturbances. These are expressed by exact solutions in the form of dissipative solitary waves, whose dynamics is investigated analytically and numerically. Our results should be useful in elucidating the behavior of space and experimental plasmas characterized by a coexistence of electron populations at different temperatures, where electron-neutral collisions are of relevance.
Resumo:
We make a case for studying the impact of intra-node parallelism on the performance of data analytics. We identify four performance optimizations that are enabled by an increasing number of processing cores on a chip. We discuss the performance impact of these opimizations on two analytics operators and we identify how these optimizations affect each another.