87 resultados para Disposal
Resumo:
This work reviews the use of micron sized bubbles made from aqueous surfactant solution in environmental remediation. This is a novel technique and offers a low cost treatment option.
Resumo:
The decades of conflict in Northern Ireland created divisions between communities, with few opportunities for cooperation. However, in the 1990s opposition to a proposed cross-border incinerator brought the divided communities together. The 1990s economic boom in the Republic of Ireland generated a waste management crisis as the by-products of rampant consumerism overwhelmed the state's rudimentary waste disposal system. Three Irish anti-incinerator campaigns which have pitted local communities against the Irish state or the Northern Ireland Department of the Environment are examined. Community attempts to gain leverage within the political governance frameworks in operation on both sides of the border are examined and the various ways in which environmental movements respond to the crisis of waste management under different governance regimes are illuminated.
Resumo:
Composers of digital music today have a bewildering variety of sound-processing tools and techniques at their disposal. At their best, these tools allow composers to hone a sound to perfection. However, they can also lead us into a routine which bypasses avenues of experimentation, simply because the known tools work so well and their sonic output is so attractive. An alternative strategy is oracular sound processing. An oracular sound processor creates a derived version of its input whose characteristics could not have been fully predicted, while affording the user little or no parametric control over the process.
Resumo:
The interactions of coal with CO2 at pressures of up to 30 bar concerning mechanisms of diffusion, the strength of interactions, and the irreversibility of uptake for the permanent disposal of CO2 into coal fields have been studied. Differential scanning calorimetry was used to investigate coal/CO2 interactions for North Dakota, Wyodak, Illinois No. 6, and Pittsburgh No. 8 coals. It was found that the first interactions of CO2 with coals led to strongly bound carbon dioxide on coal. Energy values attributed to the irreversible storage capacity for CO2 on coals were determined. The lowest irreversible sorption energy was found for North Dakota coal (0.44 J/g), and the highest value was for the Illinois No. 6 coal (8.93 J/g). The effect of high-pressure CO2 on the macromolecular structure of coal was also studied by means of differential scanning calorimetry. It was found that the temperature of the second-order phase transition of Wyodak coal decreases with an increase in CO2 pressure significantly, indicating that high-pressure CO2 diffuses through the coal matrix, causes significant plasticization effects, and changes the macromolecular structure of the Wyodak coal. Desorption characteristics of CO2 from the Pittsburgh No. 8 coal were studied by temperature-programmed desorption mass spectrometry. It was found that CO2 desorption from the coal is an activated process and follows a first-order kinetic model. The activation energy for CO2 desorption from the Pittsburgh No. 8 coal increased with the preadsorbed CO2 pressure, indicating that CO2 binds more strongly and demands more energy to desorb from the Pittsburgh No. 8 coal at higher pressures.
Resumo:
Assessment of elevated concentrations of potentially toxic elements (PTE) in soils and the association with specific soil parent material have been the focus of research for a number of years. Risk-based assessment of potential exposure scenarios to identified elevated PTE concentrations has led to the derivation of site- and contaminant-specific soil guideline values (SGVs), which represent generic assessment criteria (GACs) to identify exceeded levels that may reflect an unacceptable risk to human health. A better understanding of the ‘bioavailable’ or ‘bioaccessible’ contaminant concentrations offers an opportunity to better refine contaminant exposure assessments. Utilizing a comprehensive soil geochemical dataset for Northern Ireland provided by the Tellus Survey (GSNI) in conjunction with supplementary bioaccessibility testing of selected soil samples following the Unified BARGE Method, this paper uses exploratory data analysis and geostatistical analysis to investigate the spatial variability of pseudo-total and bioaccessible concentrations of As, Cd, Co, Cr. Cu, Ni, Pb, U, V and Zn. The paper investigates variations in individual element concentrations as well as cross-element correlations and observed lithological/pedological associations. The analysis of PTE concentrations highlighted exceeded levels of GAC values for V and Cr and exceeded SGV/GAC values for Cd, Cu, Ni, Pb, and Zn. UBM testing showed that for some soil parent materials associated with elevated PTE concentrations e.g. the Antrim Lava Group with high Ni concentrations, the measured oral bioaccessible fraction was relatively low. For other soil parent materials with relatively moderate PTE concentrations, measured oral bioaccessible fraction was relatively high (e.g. the Gala Sandstone Group of the Southern Uplands-Down Longford Terrain). These findings have implications for regional human health risk assessments for specific PTEs.
Resumo:
Stiglitz's Commission on the Measurement of Economic Performance and Social Progress (CMEPSP) argued that well-being is multidimensional and identified eight distinct dimensions. Conventional linear techniques confirm that a large number of dimensions are needed to describe development. In contrast, a new non-linear technique that we introduce from chaos theory shows that a smaller number of dimensions are needed to span the development space. From the analysis, variables representing the Health, Education, Inequality and Individual Rights areas of life quality would provide a broad picture of development, whereas income per capita adds little extra information.
Resumo:
Constructed wetland systems (CWS) have been used as a low cost bio-filtration system to treat farm wastewater. While studies have shown that CWS are efficient in removing organic compounds and pathogens, there is limited data on the presence of hormones in this type of treatment system. The objective of this study was to evaluate the ability of the CWS to reduce estrogenic and androgenic hormone concentration in dairy wastewater. This was achieved through a year long study on dairy wastewater samples obtained froma surface flow CWS. Analysis of hormonal levels was performed using a solid phase extraction (SPE) sample clean-up method, combined with reporter gene assays (RGAs) which incorporate relevant receptors capable of measuring total estrogenic or androgenic concentrations as low as 0.24 ng L1 and 6.9 ng L1 respectively. Monthly analysis showed a mean removal efficiency for estrogens of 95.2%, corresponding to an average residual concentration of 3.2 ng L1 17b-estradiol equivalent (EEQ), below the proposed lowest observable effect concentration (LOEC) of 10 ng L1. However, for one month a peak EEQ concentration of 115 ng L1 was only reduced to 18.8 ng L1. The mean androgenic activity peaked at 360 ng L1 and a removal efficiency of 92.1% left an average residual concentration of 32.3 ng L1 testosterone equivalent (TEQ). The results obtained demonstrate that this type of CWS is an efficient system for the treatment of hormones in dairy wastewater. However, additional design improvements may be required to further enhance removal efficiency of peak hormone concentrations.
Resumo:
The Water Framework Directive (WFD) has initiated a shift towards a targeted approach to implementation through its focus on river basin districts as management units and the natural ecological characteristics of waterbodies. Due to its role in eutrophication, phosphorus (P) has received considerable attention, resulting in a significant body of research, which now forms the evidence base for the programme of measures (POMs) adopted in WFD River Basin Management Plans (RBMP). Targeting POMs at critical sources areas (CSAs) of P could significantly improve environmental efficiency and cost effectiveness of proposed mitigation strategies. This paper summarises the progress made towards targeting mitigation measures at CSAs in Irish catchments. A review of current research highlights that knowledge related to P export at field scale is relatively comprehensive however; the availability of site-specific data and tools limits widespread identification of CSA at this scale. Increasing complexity of hydrological processes at larger scales limits accurate identification of CSA at catchment scale. Implementation of a tiered approach, using catchment scale tools in conjunction with field-by-field surveys could decrease uncertainty and provide a more practical and cost effective method of delineating CSA in a range of catchments. Despite scientific and practical uncertainties, development of a tiered CSA-based approach to assist in the development of supplementary measures would provide a means of developing catchment-specific and cost-effective programmes of measures for diffuse P. The paper presents a conceptual framework for such an approach, which would have particular relevance for the development of supplementary measures in High Status Waterbodies (HSW). The cost and resources necessary for implementation are justified based on HSWs’ value as undisturbed reference condition ecosystems.
Resumo:
Herein batch and continuous mesophilic anaerobic digestion of grass silage liquor was studied. The continuous process was carried out in Armfield digesters with an OLR ranging from 0.851 to 1.77 kg COD m-3 day-1. The effect of recirculation of effluent from the digester was investigated using different OLRs of grass silage liquor feed. These results showed that as the OLR increased, the methane yield decreased for the reactor with no recycle and increased for the reactor with recycle. However, the COD removal for both digesters was nearly the same at the same OLR. Overall these studies show that grass silage liquor can produce a high quality methane steam between 70% and 80% and achieve methane yields of 0.385 m3 kg-1 COD.
Resumo:
Usage of anticoagulant rodenticides (ARs) is an integral component of modern agriculture and is essential for the control of commensal rodent populations. However, the extensive deployment of ARs has led to widespread exposure of a range of non-target predatory birds and mammals to some compounds, in particular the second-generation anticoagulant rodenticides (SCARS). As a result, there has been considerable effort placed into devising voluntary best practice guidelines that increase the efficacy of rodent control and reduce the risk of non-target exposure. Currently, there is limited published information on actual practice amongst users or implementation of best practice. We assessed the behaviour of a typical group of users using an on-farm questionnaire survey. Most baited for rodents every year using SGARs. Most respondents were apparently aware of the risks of non-target exposure and adhered to some of the best practice recommendations but total compliance was rare. Our questionnaire revealed that users of first generation anticoagulant rodenticides rarely protected or checked bait stations, and so took little effort to prevent primary exposure of non-targets. Users almost never searched for and removed poisoned carcasses and many baited for prolonged periods or permanently. These factors are all likely to enhance the likelihood of primary and secondary exposure of non-target species. (C) 2010 Published by Elsevier Ltd.
Resumo:
Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L- 1 (0.018 mg TRP L- 1) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km- 2 to 4.6 km- 2 and 13.8 km- 2 to 17.2 km- 2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.
Resumo:
Abstract: Critical source area approaches to catchment management are increasingly being recognised as effective tools to mitigate sediment and nutrient transfers. These approaches often assume hydrological connectivity as a driver for environmental risk, however this assumption has rarely been tested. Using high resolution monitoring, 14 rainfall events of contrasting intensity were examined in detail for spatial and temporal dynamics of overland flow generation at a hydrologically isolated grassland hillslope in Co. Down, Northern Ireland. Interactions between overland flow connectivity and nutrient transfers were studied to test the critical source area hypothesis. While total and soluble phosphorus loads were found to be representative of the size of the overland flow contributing area (P=
Resumo:
People are now becoming more environmentally aware and as a consequence of this, industries such as the aviation industry are striving to design more environmentally friendly products. To achieve this, the current design methodologies must be modified to ensure these issues are considered from product conception through to disposal. This paper discusses the environmental problems in relation to the aviation industry and highlights some logic for making the change from the traditional Systems Engineering approach to the recent design paradigm known as Value Driven Design. Preliminary studies have been undertaken to aid in the understanding of this methodology and the existing surplus value objective function. The main results from the work demonstrate that surplus value works well bringing disparate issues such as manufacture and green taxes together to aid decision making. Further, to date studies on surplus value have used simple sensitivity analysis, but deeper consideration shows non-linear interactions between some of the variables and further work will be needed to fully account for complex issues such as environmental impact and taxes.