129 resultados para Deasley, Bryan


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissociation of the singly ionized CO2+ ion has been investigated in an intense ultrafast (55 fs) laser field, by employing an intensity selective scan technique and comparing the signals from linearly and circularly polarized pulses. Non-sequential contributions have been observed unambiguously for the first time, highlighting the role of rescattering in the dissociative process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capability of intense ultrashort laser pulses to initiate, control and image vibrational wavepacket dynamics in the deuterium molecular ion has been simulated with a view to inform and direct future femtosecond pump-control-probe experiments. The intense-field coherent control of the vibrational superposition has been studied as a function of pulse intensity and delay time, to provide an indication of key constraints for experimental studies. For selected cases of the control mechanism, probing of the subsequent vibrational wavepacket dynamics has been simulated via the photodissociation (PD) channel. Such PD probing is shown to elucidate the modified wavepacket dynamics where the position of the quantum revival is sensitive to the control process. Through Fourier transform analysis the PD yield is also shown to provide a characterisation of the vibrational distribution. It has been shown that a simple 'critical R cut-off' approximation can be used to reproduce the effect of a probe pulse interaction, providing a convenient and efficient alternative to intensive computer simulations of the PD mechanism in the deuterium molecular ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H-3(+) is the simplest triatomic molecule and plays an important role in laboratory and astrophysical plasmas. It is very stable both in terms of its electronic and nuclear degrees of freedom but is difficult to study in depth in the laboratory due to its ionic nature. In this communication, experimental results are presented for the strong field dissociation of the isotopic analogue D-3(+), using 30 fs, 800 nm laser pulses with intensities up to 10(16) W cm(-2). By employing a novel experimental set-up, ions were confined in an electrostatic ion trap so that dissociation of the molecule could be studied as it radiatively cools. It was determined that dissociation could only be observed for molecules in ro-vibrational states relatively close to the dissociation limit, while more tightly bound states demonstrated remarkable stability in even the strongest fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel scheme for enhancing electron localization in intense-field dissociation is outlined. Through manipulation of a bound vibrational wavepacket in the exemplar deuterium molecular ion, simulations demonstrate that the application of multiple phase-locked, few-cycle IR pulses can provide a powerful scheme for directing the molecular dissociation pathway. By tuning the time delay and carrier–envelope–phase for a sequence of pulse interactions, the probability of the electron being localized to a chosen nucleus can be enhanced to above 80%.

Relevância:

10.00% 10.00%

Publicador: