94 resultados para DNA repair doublestrandbreak toxicology histone h2ax chromatin
Resumo:
BRCA1 is a well described breast cancer susceptibility gene thought to be involved primarily in DNA repair. However, mutation within the BRCA1 transcriptional domain is also implicated in neoplastic transformation of mammary epithelium, but responsible mechanisms are unclear. Here we show in a rat mammary model system that wild type (WT) BRCA1 specifically represses the expression of osteopontin (OPN), a multifunctional estrogen-responsive gene implicated in oncogenic transformation, particularly that of the breast. WT.BRCA1 selectively binds OPN-activating transcription factors estrogen receptor alpha, AP-1, and PEA3, inhibits OPN promoter transactivation, and suppresses OPN mRNA and protein both from an endogenous gene and a relevant model inducible gene. WT.BRCA1 also inhibits OPN-mediated neoplastic transformation characterized by morphology change, anchorage-independent growth, adhesion to fibronectin, and invasion through Matrigel. A mutant BRCA1 allele (Mut.BRCA1) associated with familial breast cancer lacks OPN suppressor effects, binds to WT.BRCA1, and impedes WT.BRCA1 suppression of OPN. Stable transfection of rat breast tumor cell lines with Mut.BRCA1 dramatically up-regulates OPN protein and induces anchorage independent growth. In human primary breast cancer, BRCA1 mutation is significantly associated with OPN overexpression. Taken together, these data suggest that BRCA1 mutation may confer increased tissue-specific cancer risk, in part by disruption of BRCA1 suppression of OPN gene transcription.
Resumo:
Reflux of gastric contents can lead to development of reflux esophagitis and Barrett's esophagus. Barrett's esophagus is a risk factor for esophageal adenocarcinoma. Damage to DNA may lead to carcinogenesis but is repaired through activation of pathways involving polymorphic enzymes, including human 8-oxoguanine glycosylase 1 (hOGG1), X-ray repair cross-complementing 1 (XRCC1), and xeroderma pigmentosum group D (XPD). Of the single nucleotide polymorphisms identified in these genes, hOGG1 Ser 326Cys, XRCC1 Arg 399Gln, and XPD Lys 751Gln are particularly common in Caucasians and have been associated with lower DNA repair capacity. Small studies have reported associations with XPD Lys 751Gln and esophageal adenocarcinoma. XRCC1 Arg 399Gln has been linked to Barrett's esophagus and reflux esophagitis. In a population-based case-control study, we examined associations of the hOGG1 Ser 326Cys, XRCC1 Arg 399Gln, and XPD Lys 751Gln polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), reflux esophagitis (n = 230), and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using Taq-Man allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. There were no statistically significant associations between these polymorphisms and risk of esophageal adenocarcinoma, Barrett's esophagus, or reflux esophagitis.
Resumo:
The BRCA1 gene was cloned in 1994 as one of the genes that conferred genetic predisposition to early-onset breast and ovarian cancer. Since then, a genetic test for identification of high-risk individuals has been developed. Despite being implicated in many important cellular pathways, including DNA repair and regulation of transcription, the exact mechanism by which inactivation of BRCA1 might lead to malignant transformation of cells remains unknown. We examine the mechanisms that underlie inactivation of BRCA1 and assess how they affect management of patients, in terms of both primary and secondary cancer prevention strategies. Furthermore, we look at the potential usefulness of BRCA1 as a prognostic tool and as a predictive marker of response to different classes of drugs. Finally, throughout this review, we draw links between the functional consequences of BRCA1 inactivation, in terms of key cellular signalling pathways, and how they might explain specific clinical observations in individuals who carry mutations in the gene.
Resumo:
Purpose: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application.
Experimental Design: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using “mismatch” following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition.
Results: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect.
Conclusion: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefit.
Resumo:
Objectives: Treatment of epithelial ovarian cancer (EOC) remains a challenge, despite advances in surgery and chemotherapy. Hereditary ovarian cancer is primarily due to germline mutations in the BRCA1 tumour suppressor gene. In addition, sporadic EOC tumours display signi?cant of loss of BRCA1 function due to epigenetic inactivation of the BRCA1 gene. This article reviews the preclinical and clinical evidence to support a role for BRCA1 as a potential predictive biomarker of response to both platinum and taxane based chemotherapy in EOC.
Methods: We conducted a Medline and Pubmed search for reports between 1990 and 2008 using the search terms: BRCA1 and hereditary ovarian cancer, BRCA1 and sporadic ovarian cancer, ovarian cancer and chemotherapy, ovarian cancer and taxanes, ovarian cancer and platinums, ovarian cancer and clinical response, BRCA1 and DNA damage, BRCA1 and DNA repair, BRCA1 and mitotic checkpoint. If reports identi?ed by these criteria referred to other papers not in the initial search, then these were also reviewed if relevant to BRCA1 and ovarian cancer.
Results: The BRCA1 pathway plays a signi?cant role in the development of both hereditary and sporadic EOC. Evidence suggests that BRCA1 is a potential biomarker of response to platinum chemotherapy in EOC with BRCA1 de?ciency predicting for enhanced response. In contrast, initial evidence suggests that loss of BRCA1 function results in reduced response to antimicrotubule-based chemotherapy. The ability of BRCA1 to differentially modulate response to these agents involves loss of BRCA1 mediated DNA repair and mitotic checkpoint control, respectively.
Conclusions: Standard ?rst line treatment of EOC consists of a combination of platinum and taxane chemotherapy, however clinically useful biomarkers for predicting response to these agents have yet to be established. BRCA1 may prove useful as a biomarker in EOC for assigning chemotherapy treatments based on the presence or absence of BRCA1 function.
Resumo:
Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11-19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Resumo:
BRCA1 encodes a tumour suppressor protein that plays pivotal roles in homologous recombination (HR) DNA repair, cell-cycle checkpoints, and transcriptional regulation. BRCA1 germline mutations confer a high risk of early-onset breast and ovarian cancer. In more than 80% of cases, tumours arising in BRCA1 germline mutation carriers are oestrogen receptor (ER)-negative; however, up to 15% are ER-positive. It has been suggested that BRCA1 ER-positive breast cancers constitute sporadic cancers arising in the context of a BRCA1 germline mutation rather than being causally related to BRCA1 loss-of-function. Whole-genome massively parallel sequencing of ER-positive and ER-negative BRCA1 breast cancers, and their respective germline DNAs, was used to characterize the genetic landscape of BRCA1 cancers at base-pair resolution. Only BRCA1 germline mutations, somatic loss of the wild-type allele, and TP53 somatic mutations were recurrently found in the index cases. BRCA1 breast cancers displayed a mutational signature consistent with that caused by lack of HR DNA repair in both ER-positive and ER-negative cases. Sequencing analysis of independent cohorts of hereditary BRCA1 and sporadic non-BRCA1 breast cancers for the presence of recurrent pathogenic mutations and/or homozygous deletions found in the index cases revealed that DAPK3, TMEM135, KIAA1797, PDE4D, and GATA4 are potential additional drivers of breast cancers. This study demonstrates that BRCA1 pathogenic germline mutations coupled with somatic loss of the wild-type allele are not sufficient for hereditary breast cancers to display an ER-negative phenotype, and has led to the identification of three potential novel breast cancer genes (ie DAPK3, TMEM135, and GATA4).
Resumo:
Vascular diseases, including atherosclerosis, angioplasty-induced restenosis, vessel graft arteriosclerosis and hypertension-related stenosis, remain the most prevalent cause of death in the developed world. The aetiology of vascular diseases is multifactorial with both genetic and environmental factors. Recently, some of the most promising research identifies the epigenetic modification of the genome to play a major role in the disease development, linking the environmental insults with gene regulation. In this process, modification of DNA by methylation, and histone modification by acetylation, methylation, phosphorylation and/or SUMOylation are reported. Importantly, recent studies demonstrated that histone deacetylase (HDAC) enzymes are crucial in endothelial integrity, smooth muscle proliferation and in the formation of arteriosclerosis in animal models. The study of HDACs has shown remarkable specificity of HDAC family members in vascular cell growth/death that influences the disease process. Interestingly, the effects of HDACs on arteriosclerosis development in animal models have been observed after HDAC inhibition using specific inhibitors. This provides a new approach for the treatment of vascular disease using the agents that influence the epigenetic process in vascular cells. This review updates the rapid advances in epigenetics of vascular diseases focusing on the role of HDAC family in atherosclerosis. It will also discuss the underlying mechanisms of histone acetylation in vascular cells and highlight the therapeutic potential of such agents.
Resumo:
BRCA1 mediates resistance to apoptosis in response to DNA-damaging agents, causing BRCA1 wild-type tumours to be significantly more resistant to DNA damage than their mutant counterparts. In this study, we demonstrate that following treatment with the DNA-damaging agents, etoposide or camptothecin, BRCA1 is required for the activation of nuclear factor-?B (NF-?B), and that BRCA1 and NF-?B cooperate to regulate the expression of the NF-?B antiapoptotic targets BCL2 and XIAP. We show that BRCA1 and the NF-?B subunit p65/RelA associate constitutively, whereas the p50 NF-?B subunit associates with BRCA1 only upon DNA damage treatment. Consistent with this BRCA1 and p65 are present constitutively on the promoters of BCL2 and XIAP, whereas p50 is recruited to these promoters only in damage treated cells. Importantly, we demonstrate that the recruitment of p50 onto the promoters of BCL2 and XIAP is dependent upon BRCA1, but independent of its NF-?B partner subunit p65. The functional relevance of NF-?B activation by BRCA1 in response to etoposide and camptothecin is demonstrated by the significantly reduced survival of BRCA1 wild-type cells upon NF-?B inhibition. This study identifies a novel BRCA1-p50 complex, and demonstrates for the first time that NF-?B is required for BRCA1-mediated resistance to DNA damage. It reveals a functional interdependence between BRCA1 and NF-?B, further elucidating the role played by NF-?B in mediating cellular resistance of BRCA1 wild-type tumours to DNA-damaging agents.
Resumo:
Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis [1,2], EGFR targeted therapies have achieved limited clinical efficacy [3]. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction [4,5]. A directed RNAi screen revealed that glioblastoma cells overexpressing EGFRvIII [6], an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII overexpression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyperactivation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.
Resumo:
ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD(+) depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.
Resumo:
Although, ionizing radiation (IR) has been implicated to cause stress in endoplasmic reticulum (ER), how ER stress signaling and major ER stress sensors modulate cellular response to IR is unclear. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) is an ER transmembrane protein which initiates unfolded protein response (UPR) or ER stress signaling when ER homeostasis is disturbed. Here, we report that down-regulation of PERK resulted in increased clonogenic survival, enhanced DNA repair and reduced apoptosis in irradiated cancer cells. Our study demonstrated that PERK has a role in sensitizing cancer cells to IR.
Resumo:
In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair.