110 resultados para Cultiu cel·lular


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of composite asymmetric cellular beams is not fully covered by existing guidance but is an area of important practical application. Asymmetry in the shape of the cross-section of cellular beams causes development of additional bending moments in the web-posts between closely placed openings. Furthermore, the development of local composite action influences the distribution of forces in the web-flange Tees. The design method presented in this paper takes account of high degrees of asymmetry in the cross-section and also the influence of elongated or rectangular openings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipopolysaccharide O antigen of Shigella flexneri 2a has two preferred chain lengths, a short (S-OAg) composed of an average of 17 repeated units and a very long (VL-OAg) of about 90 repeated units. These chain length distributions are controlled by the chromosomally encoded WzzB and the plasmid-encoded Wzz(pHS-2) proteins, respectively. In this study, genes wzzB, wzz(pHS-2) and wzy (encoding the O-antigen polymerase) were cloned under the control of arabinose- and rhamnose-inducible promoters to investigate the effect of varying their relative expression levels on O antigen polysaccharide chain length distribution. Controlled expression of the chain length regulators wzzB and wzz(pHS-2) revealed a dose-dependent production of each modal length. Increase in one mode resulted in a parallel decrease in the other, indicating that chain length regulators compete to control the degree of O antigen polymerization. Also, when expression of the wzy gene is low, S-OAg but not VL-OAg is produced. Production of VL-OAg requires high induction levels of wzy. Thus, the level of expression of wzy is critical in determining O antigen modal distribution. Western blot analyses of membrane proteins showed comparable high levels of the WzzB and Wzz(pHS-2) proteins, but very low levels of Wzy. In vivo cross-linking experiments and immunoprecipitation of membrane proteins did not detect any direct interaction between Wzy and WzzB, suggesting the possibility that these two proteins may not interact physically but rather by other means such as via translocated O antigen precursors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the functional characterization of the galF gene of strain VW187 (Escherichia coli O7:K1), which encodes a polypeptide displaying structural features common to bacterial UDP-glucose pyrophosphorylases, including the E. coli GalU protein. These enzymes catalyse a reversible reaction converting UTP and glucose-1-phosphate into UDP-glucose and PPi. We show that, although the GalF protein is expressed in vivo, GalF-expressing plasmids cannot complement the phenotype of a galU mutant and extracts from this mutant which only produces GalF are enzymatically inactive. In contrast, the presence of GalU and GalF proteins in the same cell-free extract caused a significant reduction in the rate of pyrophosphorolysis (conversion of UDP-glucose into glucose-1-phosphate) but no significant effect on the kinetics of synthesis of UDP-glucose. The presence of GalF also increased the thermal stability of the enzyme in vitro. The effect of GalF in the biochemical properties of the UDP-glucose pyrophosphorylase required the co-synthesis of GalF and GalU, suggesting that they could interact as components of the oligomeric enzyme. The physical interaction of GalU and GalF was demonstrated in vivo by the co-expression of both proteins as fusion products using a yeast two-hybrid system. Furthermore, using a pair of galF-/galU+ and galF/galU+ isogenic strains, we demonstrated that the presence of GalF is associated with an increased concentration of intracellular UDP-glucose as well as with an enhancement of the thermal stability of the UDP-glucose pyrophosphorylase in vivo. We propose that GalF is a non-catalytic subunit of the UDP-glucose pyrophosphorylase modulating the enzyme activity to increase the formation of UDP-glucose, and this function is important for bacterial adaptation to conditions of stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The mitotic arrest deficiency protein 2 (MAD2) is a key component of the mitotic spindle assembly checkpoint, monitoring accurate chromosomal alignment at the metaphase plate before mitosis. MAD2 also has a function in cellular senescence and in a cell’s response to microtubule inhibitory (MI) chemotherapy exemplified by paclitaxel.
METHODS: Using an siRNA approach, the impact of MAD2 down-regulation on cellular senescence and paclitaxel responsiveness was investigated. The endpoints of senescence, cell viability, migration, cytokine expression, cell cycle analysis and anaphase bridge scoring were carried out using standard approaches.
RESULTS: We show that MAD2 down-regulation induces premature senescence in the MCF7 breast epithelial cancer cell line. These MAD2-depleted (MAD2k) cells are also significantly replicative incompetent but retain viability. Moreover, they show significantly higher levels of anaphase bridges and polyploidy compared to controls. In addition, these cells secrete higher levels of IL-6 and IL-8
representing key components of the senescence-associated secretory phenotype (SASP) with the ability to impact on neighbouring cells. In support of this, MAD2kcells show enhanced migratory ability. At 72 h after paclitaxel, MAD2kcells show a significant further induction of senescence compared with paclitaxel naive controls. In addition, there are significantly more viable cells in the MAD2k MCF7 cell line after paclitaxel reflecting the observed increase in senescence.
CONCLUSION: Considering that paclitaxel targets actively dividing cells, these senescent cells will evade cytotoxic kill. In conclusion, compromised MAD2 levels induce a population of senescent cells resistant to paclitaxel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Peptide YY (PYY) is a gastrointestinal hormone with physiological actions regulating appetite and energy homoeostasis. The cellular mechanisms by which nutrients stimulate PYY secretion from intestinal enteroendocrine cells are still being elucidated.

METHODS: This study comprehensively evaluated the suitability of intestinal STC-1 cells as an in vitro model of PYY secretion. PYY concentrations (both intracellular and in culture media) with other intestinal peptides (CCK, GLP-1 and GIP) demonstrated that PYY is a prominent product of STC-1 cells. Furthermore, acute and chronic PYY responses to 15 short (SCFAs)- and long-chain (LCFAs) dietary fatty acids were measured alongside parameters for DNA synthesis, cell viability and cytotoxicity.

RESULTS: We found STC-1 cells to be reliable secretors of PYY constitutively releasing PYY into cell culture media (but not into non-stimulatory buffer). We demonstrate for the first time that STC-1 cells produce PYY mRNA transcripts; that STC-1 cells produce specific time- and concentration-dependent PYY secretory responses to valeric acid; that linoleic acid and conjugated linoleic acid 9,11 (CLA 9,11) are potent PYY secretagogues; and that chronic exposure of SCFAs and LCFAs can be detrimental to STC-1 cells.

CONCLUSIONS: Our studies demonstrate the potential usefulness of STC-1 cells as an in vitro model for investigating nutrient-stimulated PYY secretion in an acute setting. Furthermore, our discovery that CLA directly stimulates L-cells to secrete PYY indicates another possible mechanism contributing to the observed effects of dietary CLA on weight loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased plasma levels of cellular adhesion molecules (CAMs) have been shown to be predictors of all cause mortality in individuals with chronic renal failure 12 and patients with end-stage renal disease receiving haemodialysis 3. In renal transplant recipients the predictive value of CAMs has not been well characterised. The aim of this study was to assess the relationship between CAMs and all-cause mortality during prospective follow-up of a renal transplant cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conjugation of ubiquitin as either a monomer or as a chain has long been known to regulate the stability, localisation, trafficking and/or function of many intracellular proteins. However, the recent explosion in our knowledge of the enzymes responsible for the removal of ubiquitin suggests they also play an important role in the regulation of many processes. Here we examine what is known about the role of deubiquitinating enzymes (DUBs), with particular emphasis upon their impact on cellular responses to external stimuli. In addition, we look at the evidence that although these enzymes are heavily outnumbered by those responsible for ubiquitin conjugation, that these enzymes may still be important cellular regulators, due to their ability to play multiple roles which can be cell type and cell context specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virus infection-induced global protein synthesis suppression is linked to assembly of stress granules (SGs), cytosolic aggregates of stalled translation preinitiation complexes. To study long-term stress responses, we developed an imaging approach for extended observation and analysis of SG dynamics during persistent hepatitis C virus (HCV) infection. In combination with type 1 interferon, HCV infection induces highly dynamic assembly/disassembly of cytoplasmic SGs, concomitant with phases of active and stalled translation, delayed cell division, and prolonged cell survival. Double-stranded RNA (dsRNA), independent of viral replication, is sufficient to trigger these oscillations. Translation initiation factor eIF2a phosphorylation by protein kinase R mediates SG formation and translation arrest. This is antagonized by the upregulation of GADD34, the regulatory subunit of protein phosphatase 1 dephosphorylating eIF2a. Stress response oscillation is a general mechanism to prevent long-lasting translation repression and a conserved host cell reaction to multiple RNA viruses, which HCV may exploit to establish persistence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Au nanoparticles (AuNPs) have attracted a great interest in fabrication of various biosensor systems for analysis of cellular and biomolecular recognitions. In conjunction with vast conjugation chemistry available, the materials are easily coupled with biomolecules such as nucleic acids, antigens or antibodies in order to achieve their many potential applications as ligand carriers or transducing platforms for preparation, detection and quantification purposes. Furthermore, the nanoparticles possess easily tuned and unique optical/ physical/ chemical characteristics, and high surface areas, making them ideal candidates to this end. In this topic, sensing mechanisms based on localized surface plasmon resonance (LSPR), particle aggregation, catalytic property, and Fluorescence Resonance Energy Transfer (FRET) of AuNPs as well as barcoding technologies including DNA biobarcodes will be discussed.