140 resultados para Crust of neutron stars


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the current status of the WASP project, a pair of wide angle photometric telescopes, individually called SuperWASP. SuperWASP-I is located in La Palma, and SuperWASP-II at Sutherland in South Africa. SW-I began operations in April 2004. SW-II is expected to be operational in early 2006. Each SuperWASP instrument consists of up to 8 individual cameras using ultra-wide field lenses backed by high-quality passively cooled CCDs. Each camera covers 7.8 x 7.8 sq degrees of sky, for nearly 500 sq degrees of total sky coverage. One of the current aims of the WASP project is the search for extra-solar planet transits with a focus on brighter stars in the magnitude range similar to 8 to 13. Additionally, WASP will search for, optical transients, track Near-Earth Objects, and study many types of variable stars and extragalactic objects. The collaboration has developed a custom-built reduction pipeline that achieves better than I percent photometric precision. We discuss future goals, which include: nightly on-mountain reductions that could be used to automatically drive alerts via a small robotic telescope network, and possible roles of the WASP telescopes as providers in such a network. Additional technical details of the telescopes, data reduction, and consortium members and institutions can be found on the web site at: http://www.superwasp.org/. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5-12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB 78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an off set of between similar to0.15-0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R 23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very "metal rich". Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic analyses of 7 SMC B-type supergiants and 1 giant have been undertaken using high resolution optical data obtained on the VLT with UVES. FASTWIND, a non-LTE, spherical, line-blanketed model atmosphere code was used to derive atmospheric and wind parameters of these stars as well as their absolute abundances. Mass-loss rates, derived from H-alpha profiles, are in poor agreement with metallicity dependent theoretical predictions. Indeed the wind-momenta of the SMC stars appear to be in good agreement with the wind-momentum luminosity relationship (WLR) of Galactic B-type stars, a puzzling result given that line-driven wind theory predicts a metallicity dependence. However the galactic stars were analysed using unblanketed model atmospheres which may mask any dependence on metallicity. A mean nitrogen enhancement of a factor of 14 is observed in the supergiants whilst only an enrichment of a factor of 4 is present in the giant, AV216. Similar excesses in nitrogen are observed in O-type dwarfs and supergiants in the same mass range, suggesting that the additional nitrogen is produced while the stars are still on the main-sequence. These nitrogen enrichments can be reproduced by current stellar evolution models, which include rotationally induced mixing, only if large initial rotational velocities of 300 kin s(-1) are invoked. Such large rotational velocities appear to be inconsistent with observed v sin i distributions for O-type stars and B-type supergiants. Hence it is suggested that the currently available stellar evolution models require more efficient mixing for lower rotational velocities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using images from the Hubble Space Telescope and the Gemini Telescope, we confirmed the disappearance of the progenitors of two type II supernovae (SNe) and evaluated the presence of other stars associated with them. We found that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location and determined its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two supernovae were produced by red supergiants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SuWt 2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on, with much fainter bipolar lobes extending perpendicularly to the ring. It has a bright (12th magnitude) central star, too cool to ionize the PN, which we discovered in the early 1990s to be an eclipsing binary. Although it was anticipated that there would also be an optically faint, hot, ionizing star in the system, a spectrum from the International Ultraviolet Explorer (IUE) did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 days, and that it consists of two nearly identical A1 V stars, each of mass ~2.7 M sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M sun star orbiting the close pair of A stars. Upon reaching the asymptotic giant branch stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B - V) = 0.40. The SuWt 2 system may be destined to perish as a Type Ia supernova.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper, we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on time-scales such that they may be confused with variations caused by light-travel time effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present observations of the Rossiter–McLaughlin effect for the transiting exoplanets WASP-1b, WASP-24b, WASP-38b and HAT-P-8b, and deduce the orientations of the planetary orbits with respect to the host stars’ rotation axes. The planets WASP-24b, WASP-38b and HAT-P-8b appear to move in prograde orbits and be well aligned, having sky-projected spin-orbit angles consistent with zero: λ=−4°.7 ± 4°.0, 15°+33−43 and Graphic, respectively. The host stars have Teff < 6250 K and conform with the trend of cooler stars having low obliquities. WASP-38b is a massive planet on a moderately long period, eccentric orbit so may be expected to have a misaligned orbit given the high obliquities measured in similar systems. However, we find no evidence for a large spin-orbit angle. By contrast, WASP-1b joins the growing number of misaligned systems and has an almost polar orbit, λ=Graphic. It is neither very massive, eccentric nor orbiting a hot host star, and therefore does not share the properties of many other misaligned systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The POINT-AGAPE (Pixel-lensing Observations with the Isaac Newton Telescope-Andromeda Galaxy Amplified Pixels Experiment) survey is an optical search for gravitational microlensing events towards the Andromeda galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. In our first paper of this series, we reported the detection of 20 classical novae (CNe) observed in Sloan r' and i' passbands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brightness of type Ia supernovae, and their homogeneity as a class, makes them powerful tools in cosmology, yet little is known about the progenitor systems of these explosions. They are thought to arise when a white dwarf accretes matter from a companion star, is compressed and undergoes a thermonuclear explosion(1-3). Unless the companion star is another white dwarf ( in which case it should be destroyed by the mass-transfer process itself), it should survive and show distinguishing properties. Tycho's supernova(4,5) is one of only two type Ia supernovae observed in our Galaxy, and so provides an opportunity to address observationally the identification of the surviving companion. Here we report a survey of the central region of its remnant, around the position of the explosion, which excludes red giants as the mass donor of the exploding white dwarf. We found a type G0 - G2 star, similar to our Sun in surface temperature and luminosity ( but lower surface gravity), moving at more than three times the mean velocity of the stars at that distance, which appears to be the surviving companion of the supernova.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The POINT-AGAPE (Pixel-lensing Observations with the Isaac Newton Telescope-Andromeda Galaxy Amplified Pixels Experiment) survey is an optical search for gravitational microlensing events towards the Andromeda galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. Here we describe the automated detection and selection pipeline used to identify M31 classical novae (CNe) and we present the resulting catalogue of 20 CN candidates observed over three seasons. CNe are observed both in the bulge region as well as over a wide area of the M31 disc. Nine of the CNe are caught during the final rise phase and all are well sampled in at least two colours. The excellent light-curve coverage has allowed us to detect and classify CNe over a wide range of speed class, from very fast to very slow. Among the light curves is a moderately fast CN exhibiting entry into a deep transition minimum, followed by its final decline. We have also observed in detail a very slow CN which faded by only 0.01 mag d(-1) over a 150-d period. We detect other interesting variable objects, including one of the longest period and most luminous Mira variables. The CN catalogue constitutes a uniquely well-sampled and objectively-selected data set with which to study the statistical properties of CNe in M31, such as the global nova rate, the reliability of novae as standard-candle distance indicators and the dependence of the nova population on stellar environment. The findings of this statistical study will be reported in a follow-up paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances are determined from several lines of two ionization states in both stars resulting in [Mg/Fe] = - 0.24 +/- 0.16 (+/- 0.28). This result suggests that the [alpha(Mg)/Fe] ratio in WLM may be suppressed relative to solar abundances ( also supported by differential abundances relative to similar stars in NGC 6822 and the Small Magellanic Cloud [SMC]). The absolute Mg abundance, [Mg/H] = -0.62, is high relative to what is expected from the nebulae though, where two independent spectroscopic analyses of the H II regions in WLM yield [O/H] = - 0.89. Intriguingly, the oxygen abundance determined from the O I lambda6158 feature in one WLM star is [O/H] = - 0.21 +/- 0.10 (+/- 0.05), corresponding to 5 times higher than the nebular oxygen abundance. This is the first time that a significant difference between stellar and nebular oxygen abundances has been found, and currently, there is no simple explanation for this difference. The two stars are massive supergiants with distances that clearly place them in WLM. They are young ( less than or equal to 10 Myr) and should have a similar composition to the ISM. Additionally, differential abundances suggest that the O/Fe ratio in the WLM star is consistent with similar stars in NGC 6822 and the SMC, galaxies where the average stellar oxygen abundances are in excellent agreement with the nebular results. If the stellar abundances reflect the true composition of WLM, then this galaxy lies well above the metallicity-luminosity relationship for dwarf irregular galaxies. It also suggests that WLM is more chemically evolved than currently interpreted from its color-magnitude diagram. The similarities between the stars in WLM and NGC 6822 suggest that these two galaxies may have had similar star formation histories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested(1,2) to make up much of the 'dark matter' in the halo of the Milky way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models(3-5) indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.