98 resultados para Coupling-constants
Resumo:
A comprehensive nonlinear model is put forward for coupled longitudinal to transverse displacements in a horizontal dust mono-layer, levitated under the combined influence of gravity and an electric and/or magnetic sheath field. A set of coupled nonlinear evolution equations are obtained in a discrete description, and a pair of coupled (Boussinesq-like) PDEs are obtained in the continuum approximation. Finally, the amplitude modulation of the coupled modes is discussed, pointing out the importance of the coupling. All these results are generic, i.e. valid for any assumed form of the inter-grain interaction potential U and the sheath potential Phi.
Resumo:
Recent landmark experiments have demonstrated how quantum mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems. Here we present a theoretical model to simulate such an output coupler for a Tonks- Girardeau gas that shows excellent agreement with the experimental results for atom transport and output coupling. The solid theoretical basis our model provides allows us to explore non-equilibrium transport phenomena in ultra-cold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localised in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.
Resumo:
Using the theory of Eliashberg and Nambu for strong-coupling superconductors, we have calculated the gap function for a model superconductor and a selection of real superconductors includong the elements Al, Sn, Tl, Nb, In, Pb and Hg and one alloy, Bi2Tl. We have determined thetemperature-dependent gap edge in each and found that in materials with weak electron-phonon ($\lambda 1.20$), not only is the gap edge double valued but it also departs significantly from the BCS form and develops a shoulderlike structure which may, in some cases, denote a gap edge exceeding the $T = 0$ value. These computational results support the insights obtained by Leavens in an analytic consideration of the general problem. Both the shoulder and double value arise from a common origin seated in the form of the gap function in strong coupled materials at finite temperatures. From the calculated gap function, we can determine the densities of states in the materials and the form of the tunneling current-voltage characteristics for junctions with these materials as electroddes. By way of illustration, results are shown for the contrasting cases of Sn ($\lambda=0.74$) and Hg ($\lambad=1.63$). The reported results are distinct in several ways from BCS predictions and provide an incentive determinative experimental studies with techniques such as tunneling and far infrared absorption.
Resumo:
Symmetrical and unsymmetrical ligands containing terpyridyl coordinating units (N, N, N) or a cyclometalating equivalent (N, C, N), connected back-to-back either directly or via a p-terphenylene or 1,3-phenylene spacer, have been used to construct new diruthenium complexes. These compounds incorporate various terdentate chelates as capping ligands, to allow a double control of the electronic properties of each subcomplex and of the ensemble: via the terminal ligand or through the bridging fragment. Electronic coupling was studied from the intervalence transitions observed in several bimetallic ruthenium complexes of the bis-(cyclometalated) type differing by the substitution of a nitrogen atom by carbon in the terminal terpyridyl unit. The largest metal-metal interaction was found in complexes for which the terminal complexing unit is of the 1,3-di-2-pyridylbenzene type, i.e., with the carbon atom located on the metal-metal C-2 axis of the molecule. Investigations of the mechanism of interaction by extended Huckel calculations showed that the replacement of nitrogen by carbon raises the filled ligand levels, increasing the mixing with ligand orbitals and thus the metal-metal coupling. Finally, the intervalence transition was still observed for a bridging ligand containing three phenylene units as spacers, corresponding to a 24-Angstrom metal-metal distance.
Resumo:
New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).
Resumo:
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.
Resumo:
Otto configuration attenuated total reflection (ATR) measurements of the excitation of surface plasmons in the infrared have been carried out on YBCO films deposited on MgO (100) substrates. The dielectric constants for YBCO at 3.392 mu m are determined to be -10 + 15i for c-axis material. The anisotropic nature of the cuprate is seen from films with other orientations: nearly a-axis material has constants of 4.0 + 7.0i. It is thus not metallic in its optical response along the c-axis which lies parallel to the substrate plane. Ellipsometric measurements in the visible on c-axis material point to a maximum surface plasmon energy of 1 eV.