52 resultados para Conversion efficiency of N-fertilizer on forage
Resumo:
Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium.At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength.The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed.
Resumo:
The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed.
In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine.
A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles.
A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point.
The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown.
The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.
Resumo:
Quasi-phase matching (QPM) can be used to increase the conversion efficiency of the high harmonic generation (HHG) process. We observed QPM with an improved dual-gas foil target with a 1 kHz, 10 mJ, 30 fs laser system. Phase tuning and enhancement were possible within a spectral range from 17 nm to 30 nm. Furthermore analytical calculations and numerical simulations were carried out to distinguish QPM from other effects, such as the influence of adjacent jets on each other or the laser gas interaction. The simulations were performed with a 3 dimensional code to investigate the phase matching of the short and long trajectories individually over a large spectral range.
Resumo:
A nanocomposite porous electrode structure consisting of hierarchical iodine-doped zinc oxide (I-ZnO) aggregates combined with the two simple solution-processed interfacial modifications i.e. a ZnO compact layer (CL) and a TiO2 protective layer (PL) has been developed in order to understand electron transport and recombination in the photoanode matrix, together with boosting the conversion efficiency of I-ZnO based dye-sensitized solar cells (DSCs). Electrochemical impedance spectra demonstrate that ZnO CL pre-treatment and TiO2 PL post-treatment synergistically reduce charge-transfer resistance and suppress electron recombination. Furthermore, the electron lifetime in two combined modifications of IZnO + CL + PL photoelectrode is the longest in comparison with the other three photoelectrodes. As a consequence, the overall conversion efficiency of I-ZnO + CL + PL DSC is significantly enhanced to 6.79%, with a 36% enhancement compared with unmodified I-ZnO DSC. Moreover, the stability of I-ZnO + CL + PL cell is improved as compared to I-ZnO one. The mechanism of electron transfer and recombination upon the introduction of ZnO CL and TiO2 PL is also proposed in this work.
Resumo:
This letter investigates the uplink spectral efficiency (SE) of a two-tier cellular network, where massive multiple-input multiple-output macro base stations are overlaid with dense small cells. Macro user equipments (MUEs) and small cells with single user equipment uniformly scattered are modeled as two independent homogeneous Poisson point processes. By applying stochastic geometry, we analyze the SE of the multiuser uplink at a macro base station that employs a zero-forcing detector and we obtain a novel lower bound as well as its approximation. According to the simple and near-exact analytical expression, we observe that the ideal way to improve the SE is by increasing the MUE density and the base station antennas synchronously rather than increasing them individually. Furthermore, a large value of path loss exponent has a positive effect on the SE due to the reduced aggregated interference.
Resumo:
The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.
Resumo:
The article is focused on analysis of global efficiency of new mold for rotational molding of plastic parts, being directly heated by thermal fluid. The overall efficiency is based on several items such as reduction of cycle time, better uniformity of heating-cooling and low energy consumption. The new tool takes advantage of additive fabrication and electroforming for making the optimal manifold and cavity shell of the mold. Experimental test of a prototype mold was carried out on an experimental rotational molding machine, developed for this purpose, measuring wall temperature, and internal air temperature, with and without plastic material inside. Results were compared with conventional mold heated into an oven and to theoretical simulations done by Computational Fluid Dynamic software (CFD). The analysis represents considerable improvement of cycle time related to conventional methods (heated by oven) and better thermal uniformity to conventional procedures by direct heating of oil with external channels. In addition to thermal analysis an energetic efficiency study was done. POLYM. ENG. SCI., 52:1998-2005, 2012. © 2012 Society of Plastics Engineers Copyright © 2012 Society of Plastics Engineers.