52 resultados para Conventional Tillage
Resumo:
Purpose: To determine differences in overall tumor responses measured by volumetric assessment and bioluminescence imaging (BLI) following exposure to uniform and non-uniform radiation fields in an ectopic prostate tumor model.
Materials and methods: Bioluminescent human prostate tumor xenografts were established by subcutaneous implantation into male mice. Tumors were irradiated with uniform or non-uniform field configurations using conventional in vivo irradiation procedures performed using a 225 kVp generator with custom lead shielding. Tumor responses were measured using Vernier calipers and by BLI using an in vivo imaging system. Survival was defined as the time to quadroupling of pre-treatment tumor volume.
Results: The correlation between BLI and tumor volume measurements was found to be different for un-irradiated (R = 0.61), uniformly irradiated (R = 0.34) and partially irradiated (R = 0.30) tumors. Uniformly irradiated tumors resulted in an average tumor growth delay of 60 days with median survival of 75 days, compared to partially irradiated tumors which showed an average growth delay of 24 days and median survival of 38 days.
Conclusions: Correlation between BLI and tumor volume measurements is lower for partially irradiated tumors than those exposed to uniform dose distributions. The response of partially irradiated tumors suggests non-uniformity in response beyond physical dose distribution within the target volume. Dosimetric uncertainty associated with conventional in vivo irradiation procedures prohibits their ability to accurately determine tumor response to non-uniform radiation fields and stresses the need for image guided small animal radiation research platforms.
Resumo:
Transportation accounts for 22% of greenhouse gas emissions in the UK, and increases to 25% in Northern Ireland. Surface transport carbon dioxide emissions, consisting of road and rail, are dominated by cars. Demand for mobility is rising rapidly and vehicle numbers are expected to more than double by 2050. Car manufacturers are working towards reducing their carbon footprint through improving fuel efficiency and controlling exhaust emissions. Fuel efficiency is now a key consideration of consumers purchasing a new vehicle. While measures have been taken to help to reduce pollutants, in the future, alternative technologies will have to be used in the transportation industry to achieve sustainability. There are currently many alternatives to the market leader, the internal combustion engine. These alternatives include hydrogen fuel cell vehicles and electric vehicles, a term which is widely used to cover battery electric vehicles, plug-in hybrid electric vehicles and extended-range electric vehicles. This study draws direct comparisons measuring the differing performance in terms of fuel consumption, carbon emissions and range of a typical family saloon car using different fuel types. These comparisons will then be analysed to see what effect switching from a conventionally fuelled vehicle to a range extended electric vehicle would have not only on the end user, but also the UK government.
Resumo:
BACKGROUND: Improving diet and lifestyle is important for prevention of cardiovascular disease (CVD). Observational evidence suggests that increasing fruit and vegetable (FV) consumption may lower CVD risk, largely through modulation of established risk factors, but intervention data are required to fully elucidate the mechanisms by which FVs exert benefits on vascular health.
OBJECTIVE: The aim of this study was to examine the dose-response effect of FV intake on cardiovascular risk factors in adults at high CVD risk.
METHODS: This was a randomized controlled parallel group study involving overweight adults (BMI: >27 and ≤35 kg/m(2)) with a habitually low FV intake (≤160 g/d) and a high total risk of developing CVD (estimated ≥20% over 10 y). After a 4-wk run-in period where FV intake was limited to <2 portions/d (<160 g/d), 92 eligible participants were randomly assigned to 1 of 3 groups: to consume either 2, 4, or 7 portions (equivalent to 160 g, 320 g, or 560 g, respectively) of FVs daily for 12 consecutive weeks. Fasting venous blood samples were collected at baseline (week 4) and post-intervention (week 16) for analysis of lipid fractions and high-sensitivity C-reactive protein (hsCRP) concentrations. Compliance with the FV intervention was determined with use of self-reported FV intake and biomarkers of micronutrient status. Ambulatory blood pressure and body composition were also measured pre- and post-intervention.
RESULTS: A total of 89 participants completed the study and body composition remained stable throughout the intervention period. Despite good compliance with the intervention, no significant difference was found between the FV groups for change in measures of ambulatory blood pressure, plasma lipids, or hsCRP concentrations.
CONCLUSIONS: There was no evidence of a dose-response effect of FV intake on conventional CVD risk factors measured in overweight adults at high CVD risk. This trial was registered at clinicaltrials.gov as NCT00874341.
Resumo:
Transport accounts for 22% of greenhouse gas emissions in the United Kingdom and cars are expected tomore than double by 2050. Car manufacturers are continually aiming for a substantially reduced carbonfootprint through improved fuel efficiency and better powertrain performance due to the strict EuropeanUnion emissions standards. However, road tax, not just fuel efficiency, is a key consideration of consumerswhen purchasing a car. While measures have been taken to reduce emissions through stricter standards, infuture, alternative technologies will be used. Electric vehicles, hybrid vehicles and range extended electricvehicles have been identified as some of these future technologies. In this research a virtual test bed of aconventional internal combustion engine and a range extended electric vehicle family saloon car were builtin AVL’s vehicle and powertrain system level simulation tool, CRUISE, to simulate the New EuropeanDrive Cycle and the results were then soft-linked to a techno-economic model to compare the effectivenessof current support mechanisms over the full life cycle of both cars. The key finding indicates that althoughcarbon emissions are substantially reduced, switching is still not financially the best option for either theconsumer or the government in the long run.
Resumo:
Mycotoxins and heavy metals are ubiquitous in the environment and contaminate many foods. The widespread use of pesticides in crop production to control disease contributes further to the chemical contamination of foods. Thus multiple chemical contaminants threaten the safety of many food commodities; hence the present study used maize as a model crop to identify the severity in terms of human exposure when multiple contaminants are present. High Content Analysis (HCA) measuring multiple endpoints was used to determine cytotoxicity of complex mixtures of mycotoxins, heavy metals and pesticides. Endpoints included nuclear intensity (NI), nuclear area (NA), plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial mass (MM). At concentrations representing legal limits of each individual contaminant in maize (3. ng/ml ochratoxin A (OTA), 1. μg/ml fumonisin B1 (FB1), 2. ng/ml aflatoxin B1 (AFB1), 100. ng/ml cadmium (Cd), 150. ng/ml arsenic (As), 50. ng/ml chlorpyrifos (CP) and 5. μg/ml pirimiphos methyl (PM), the mixtures (tertiary mycotoxins plus Cd/As) and (tertiary mycotoxins plus Cd/As/CP/PM) were cytotoxic for NA and MM endpoints with a difference of up to 13.6% (. p≤. 0.0001) and 12% (. p≤. 0.0001) respectively from control values. The most cytotoxic mixture was (tertiary mycotoxins plus Cd/As/CP/PM) across all 4 endpoints (NA, NI, MM and MMP) with increases up to 61.3%, 23.0%, 61.4% and 36.3% (. p≤. 0.0001) respectively. Synergy was evident for two endpoints (NI and MM) at concentrations contaminating maize above legal limits, with differences between expected and measured values of (6.2-12.4% (. p≤. 0.05-. p≤. 0.001) and 4.5-12.3% (. p≤. 0.05-. p≤. 0.001) for NI and MM, respectively. The study introduces for the first time, a holistic approach to identify the impact in terms of toxicity to humans when multiple chemical contaminants are present in foodstuffs. Governmental regulatory bodies must begin to contemplate how to safeguard the population when such mixtures of contaminants are found in foods and this study starts to address this critical issue.