176 resultados para Control-Display Systems.
Resumo:
We present a novel approach to goal recognition based on a two-stage paradigm of graph construction and analysis. First, a graph structure called a Goal Graph is constructed to represent the observed actions, the state of the world, and the achieved goals as well as various connections between these nodes at consecutive time steps. Then, the Goal Graph is analysed at each time step to recognise those partially or fully achieved goals that are consistent with the actions observed so far. The Goal Graph analysis also reveals valid plans for the recognised goals or part of these goals. Our approach to goal recognition does not need a plan library. It does not suffer from the problems in the acquisition and hand-coding of large plan libraries, neither does it have the problems in searching the plan space of exponential size. We describe two algorithms for Goal Graph construction and analysis in this paradigm. These algorithms are both provably sound, polynomial-time, and polynomial-space. The number of goals recognised by our algorithms is usually very small after a sequence of observed actions has been processed. Thus the sequence of observed actions is well explained by the recognised goals with little ambiguity. We have evaluated these algorithms in the UNIX domain, in which excellent performance has been achieved in terms of accuracy, efficiency, and scalability.
Resumo:
Relative Evidential Supports (RES) was developed and justified several years ago as a non-numeric apparatus that allows us to compare evidential supports for alternative conclusions when making a decision. An extension called Graded Relative Evidence (GRE) of the RES concept of pairwise balancing and trading-off of evidence is reported here which keeps its basic features of simplicity and perspicacity but enriches its modelling fidelity by permitting very modest and intuitive variations in degrees of outweighing (which the essentially binary RES does not). The formal justification is very simply based on linkages to RES and to the Dempster - Shafer theory of evidence. The use of the simple extension is illustrated and to a small degree further justified empirically by application to a topical scientific debate about what is called the Congo Crossover Conjecture here. This decision-making instance is chosen because of the wealth of evidence that has been accumulated on both sides of the debate and the range of evidence strengths manifested in it. The conjecture is that the advent of Aids was in the late 1950s in the Congo when a vaccine for polio was allegedly cultivated in the kidneys of chimpanzees which allowed the Aids infection to cross over to humans from primates. © 2005 Springer.
Resumo:
A well-cited paper suggesting fuzzy coding as an alternative to the conventional binary, grey and floating-point representations used in genetic algorithms.
Resumo:
This is the first paper that shows and theoretically analyses that the presence of auto-correlation can produce considerable alterations in the Type I and Type II errors in univariate and multivariate statistical control charts. To remove this undesired effect, linear inverse ARMA filter are employed and the application studies in this paper show that false alarms (increased Type I errors) and an insensitive monitoring statistics (increased Type II errors) were eliminated.
Resumo:
This paper theoretically analysis the recently proposed "Extended Partial Least Squares" (EPLS) algorithm. After pointing out some conceptual deficiencies, a revised algorithm is introduced that covers the middle ground between Partial Least Squares and Principal Component Analysis. It maximises a covariance criterion between a cause and an effect variable set (partial least squares) and allows a complete reconstruction of the recorded data (principal component analysis). The new and conceptually simpler EPLS algorithm has successfully been applied in detecting and diagnosing various fault conditions, where the original EPLS algorithm did only offer fault detection.
Resumo:
This is the first paper that introduces a nonlinearity test for principal component models. The methodology involves the division of the data space into disjunct regions that are analysed using principal component analysis using the cross-validation principle. Several toy examples have been successfully analysed and the nonlinearity test has subsequently been applied to data from an internal combustion engine.
Resumo:
This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
Resumo:
The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.
Resumo:
This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.
Resumo:
This paper presents a new method for complex power flow tracing that can be used for allocating the transmission loss to loads or generators. Two algorithms for upstream tracing (UST) and downstream tracing (DST) of the complex power are introduced. UST algorithm traces the complex power extracted by loads back to source nodes and assigns a fraction of the complex power flow through each line to each load. DST algorithm traces the output of the generators down to the sink nodes determining the contributions of each generator to the complex power flow and losses through each line. While doing so, active- and reactive-power flows as well as complex losses are considered simultaneously, not separately as most of the available methods do. Transmission losses are taken into consideration during power flow tracing. Unbundling line losses are carried out using an equation, which has a physical basis, and considers the coupling between active- and reactive-power flows as well as the cross effects of active and reactive powers on active and reactive losses. The tracing algorithms introduced can be considered direct to a good extent, as there is no need for exhaustive search to determine the flow paths as these are determined in a systematic way during the course of tracing. Results of application of the proposed method are also presented.
Resumo:
This paper presents a new method for calculating the individual generators’ shares in line flows, line losses and loads. The method is described and illustrated on active power flows, but it can be applied in the same way to reactive power flows. Starting from a power flow solution, the line flow matrix is formed. This matrix is used for identifying node types, tracing the power flow from generators downstream to loads, and to determine generators’ participation factors to lines and loads. Neither exhaustive search nor matrix inversion is required. Hence, the method is claimed to be the least computationally demanding amongst all of the similar methods.
Resumo:
A modification of liquid source misted chemical deposition process (LSMCD) with heating mist and substrate has developed, and this enabled to control mist penetrability and fluidity on sidewalls of three-dimensional structures and ensure step coverage. A modified LSMCD process allowed a combinatorial approach of Pb(Zr,Ti)O-3 (PZT) thin films and carbon nanotubes (CNTs) toward ultrahigh integration density of ferroelectric random access memories (FeRAMs). The CNTs templates were survived during the crystallization process of deposited PZT film onto CNTs annealed at 650 degrees C in oxygen ambient due to a matter of minute process, so that the thermal budget is quite small. The modified LSMCD process opens up the possibility to realize the nanoscale capacitor structure of ferroelectric PZT film with CNTs electrodes toward ultrahigh integration density FeRAMs.