79 resultados para Contemporary capitalist system of production
Resumo:
The nervous system of young and adult Amphilina foliacea was studied with immunocytochemical, electron microscopical and spectrofluorometrical methods. The general neuroanatomy is described in detail. New data on the structure and development of the brain were obtained. The 5-HT and GYIRFamide-immunoreactivities occur in separate sets of neurones. The innervation of the reproductive organs is described. The fine structure of 2 types of neurones in the CNS, a sensory neurone, a 'glial' cell type, the neuropile and the synapses are described. The level of 5-HT varies between 0.074 and 0.461 mug/g wet weight. This is the first detailed study of the nervous system of A. foliacea. Earlier data on the structure of the nervous system in A. foliacea published in Russian are introduced into the discussion. The study provides data that can be used when considering the phylogenetic position of Amphilinidea.
Resumo:
The ultrastructure of the nervous system of a planarian, Procerodes littoralis, belonging to the taxon Maricola is described for the first time. The study has revealed the presence of two neuronal cell types and a glia-like cell. Immunogold labelling with antibodies to two native flatworm neuropeptides-neuropeptide F and GNFFRFamide-has been localised to one neuronal cell type and associated processes and synapses, thus indicating its peptidergic nature. The ultrastructural features are compared to those of other investigated turbellarian species. The number of features shared by species from the Proseriata, Lecitoepitheliata and Tricladida show that in respect of the nervous system these taxa form a closely related group. (C) 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.
Resumo:
Cholinergic, serotoninergic and peptidergic neuronal pathways have been demonstrated in whole-mount preparations of the frog-lung digenean trematode, Haematoloechus medioplexus, using enzyme cytochemical methodologies and indirect immunocytochemical techniques in conjunction with confocal scanning laser microscopy. All 3 classes of neuroactive substance mere found throughout both central and peripheral elements of a well-developed orthogonal nervous system, Peptidergic immunoreactivity was particularly strong, using antisera directed to native flatworm neuropeptides, neuropeptide F, and FMRFamide-related peptides (FaRPs), and there was significant overlap in the staining with that for cholinergic components, The serotoninergic system appeared quite separate, with the staining localised to a different set of neurons. (C) 1997 Australian Society for Parasitology.
Resumo:
In an immunocytochemical study, using an antiserum and a monoclonal antibody specific for the amino acid, gamma-aminobutyric acid (GABA), GABA-like immunoreactivity (GLIR) has been demonstrated for the first time in parasitic flatworms. In Moniezia expansa (Cestoda), GLIR was seen in nerve nets which were closely associated with the body wall musculature and in the longitudinal nerve cords. In the liver fluke Fasciola hepatica (Trematoda), the GLIR occurred in the longitudinal nerve cords and lateral nerves in the posterior half of the worm. GLIR was also detected in subtegumental fibres in F. hepatica. The presence of GABA was verified, using high-pressure liquid chromatography coupled with fluorescence detection. The concentration of GABA (mean+/-S.D.) in M. expansa anterior region was 124.8+/-15.3 picomole/mg wet weight, while in F. hepatica it was 16.8+/-4.9 picomole/mg. Since several insecticides and anti-nematodal drugs are thought to interfere with GABA-receptors, the findings indicate that GABAergic neurotransmission may be a potential target for chemotherapy in flatworms too.
Resumo:
An indirect immunocytochemical technique has been interfaced with confocal scanning laser microscopy to investigate the occurrence and distribution of serotoninergic (5-HT) nerve elements in Mesocestoides corti tetrathyridia. Cell bodies and nerve fibers immunoreactive to 5-HT were found concentrated in the innervation around the 4 suckers and associated commissures and in the 5 pairs of longitudinal nerve cords and their cross-connectives. Immunoreactivity was evident also in the extensive, peripheral network of fine fibers of the subtegumental region and in the plexus of varicose fibers that innervate the muscle in each of the suckers. In dividing stages of the tetrathyridium, the immunoreactive lateral nerve cords of adjoining progeny were in continuity around the base of the division cleft.
Resumo:
An electron immunogold-labeling technique was used in conjunction with a post-embedding procedure to demonstrate for the first time the ultrastructural distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF), in the nervous system of the cestode Moniezia expansa. Two axon types, distinguished by their populations of different-sized electron-dense vesicles, were identified. Immunogold labeling demonstrated an apparent homogeneity of PP, FMRFamide and NPF (M. expansa) antigenic sites throughout the larger dense-cored vesicles within the central nervous system. Triple labeling clearly demonstrated the co-localisation of immunoreactivities (IR) for NPF, PP and FMRFamide within the same dense-cored vesicles. The presence of NPF-IR within the vesicles occupying the perikaryon of the neuronal cell body indicated that the peptides had undergone post-translational C-terminal amidation prior to entering the axon. Antigen pre-absorption experiments using NPF prevented labeling with either PP or FMRFamide antisera, and the failure of these antisera to block NPF-IR supports the view that some, if not all, of the PP/FMRFamide-IR is due to NPF-like peptides.
Resumo:
The central (CNS) and peripheral (PNS) nervous systems of the cyclophyllidean tapeworm, Moniezia expansa, were examined for the presence of cholinergic, serotoninergic and peptidergic elements using enzyme cytochemical and immunocytochemical techniques in conjunction with light and confocal scanning laser microscopy. Cholinesterase activity and 5-hydroxytryptamine- and regulatory peptide-immunoreactivities (IRs) were localized to the nerve fibres and cell bodies of all of the major neuronal components in the CNS of the worm, including the cerebral ganglia and connecting commissure, the 10 longitudinal nerve cords and associated transverse ring commissures. Although each of the 3 systems appeared well developed and comprised a significant portion of the nervous system, the serotoninergic constituent was the most highly developed, consisting of a vast array of nerve fibres and cell bodies distributed throughout the strobila of the worm. A close association of cholinesterase reactivity and peptide-IRs was evident throughout the CNS, indicating the possible co-localization of acetylcholine and neuropeptides. Within the PNS, cholinergic activity and serotoninergic- and peptidergic-IRs occurred in the subtegumental network of nerve fibres and somatic musculature. Although all 3 neurochemical elements were present in the acetabula, they were found in different nerve fibres; only cholinergic and peptidergic cell bodies were found. The common genital opening, vagina and ootype regions of the reproductive system displayed a rich innervation of all 3 types of neuronal populations. Within the peptidergic system, immunostaining with antisera raised to the C-terminus of the neuropeptide Y superfamily of peptides and the invertebrate peptides, neuropeptide F (M. expansa) and FMRFamide was the most prevalent. Limited positive-IR for substance P and neurokinin A were also recorded in the CNS of the worm.