96 resultados para Constrained ridge regression
Resumo:
We study an energy-constrained sandpile model with random neighbors. The critical behavior of the model is in the same universality class as the mean-field self-organized criticality sandpile. The critical energy E-c depends on the number of neighbors n for each site, but the various exponents are independent of n. A self-similar structure with n-1 major peaks is developed for the energy distribution p(E) when the system approaches its stationary state. The avalanche dynamics contributes to the major peaks appearing at E-Pk = 2k/(2n - 1) with k = 1,2,...,n-1, while the fine self-similar structure is a natural result of the way the system is disturbed. [S1063-651X(99)10307-6].
Resumo:
Following a suggestion of Blake et al., we have attempted to account for the unusually large abundances of selected oxygen-containing organic molecules in the so-called
Resumo:
Nitrogen Dioxide (NO2) is known to act as an environmental trigger for many respiratory illnesses. As a pollutant it is difficult to map accurately, as concentrations can vary greatly over small distances. In this study three geostatistical techniques were compared, producing maps of NO2 concentrations in the United Kingdom (UK). The primary data source for each technique was NO2 point data, generated from background automatic monitoring and background diffusion tubes, which are analysed by different laboratories on behalf of local councils and authorities in the UK. The techniques used were simple kriging (SK), ordinary kriging (OK) and simple kriging with a locally varying mean (SKlm). SK and OK make use of the primary variable only. SKlm differs in that it utilises additional data to inform prediction, and hence potentially reduces uncertainty. The secondary data source was Oxides of Nitrogen (NOx) derived from dispersion modelling outputs, at 1km x 1km resolution for the UK. These data were used to define the locally varying mean in SKlm, using two regression approaches: (i) global regression (GR) and (ii) geographically weighted regression (GWR). Based upon summary statistics and cross-validation prediction errors, SKlm using GWR derived local means produced the most accurate predictions. Therefore, using GWR to inform SKlm was beneficial in this study.
Resumo:
Laser plasma interferograms are currently analyzed by extraction of the phase-shift map with fast Fourier transform (FFT) techniques [Appl. Opt. 18, 3101 (1985)]. This methodology works well when interferograms are only marginally affected by noise and reduction of fringe visibility, but it can fail to produce accurate phase-shift maps when low-quality images are dealt with. We present a novel procedure for a phase-shift map computation that makes extensive use of the ridge extraction in the continuous wavelet transform (CWT) framework. The CWT tool is flexible because of the wide adaptability of the analyzing basis, and it can be accurate because of the intrinsic noise reduction in the ridge extraction. A comparative analysis of the accuracy performances of them new tool and the FFT-based one shows that the CWT-based tool produces phase maps considerably less noisy and that it can better resolve local inhomogeneties. (C) 2001 Optical Society of America.
Resumo:
Discrete Conditional Phase-type (DC-Ph) models are a family of models which represent skewed survival data conditioned on specific inter-related discrete variables. The survival data is modeled using a Coxian phase-type distribution which is associated with the inter-related variables using a range of possible data mining approaches such as Bayesian networks (BNs), the Naïve Bayes Classification method and classification regression trees. This paper utilizes the Discrete Conditional Phase-type model (DC-Ph) to explore the modeling of patient waiting times in an Accident and Emergency Department of a UK hospital. The resulting DC-Ph model takes on the form of the Coxian phase-type distribution conditioned on the outcome of a logistic regression model.
Resumo:
Background: We sought to determine if a common polymorphism can influence vulnerability to LDL cholesterol, and thereby influence the clinical benefit derived from therapies that reduce LDL cholesterol.
Resumo:
In this paper, a novel framework for visual tracking of human body parts is introduced. The approach presented demonstrates the feasibility of recovering human poses with data from a single uncalibrated camera by using a limb-tracking system based on a 2-D articulated model and a double-tracking strategy. Its key contribution is that the 2-D model is only constrained by biomechanical knowledge about human bipedal motion, instead of relying on constraints that are linked to a specific activity or camera view. These characteristics make our approach suitable for real visual surveillance applications. Experiments on a set of indoor and outdoor sequences demonstrate the effectiveness of our method on tracking human lower body parts. Moreover, a detail comparison with current tracking methods is presented.
Resumo:
The Finite Difference Time Domain (FDTD) method is becoming increasingly popular for room acoustics simulation. Yet, the literature on grid excitation methods is relatively sparse, and source functions are traditionally implemented in a hard or additive form
using arbitrarily-shaped functions which do not necessarily obey the physical laws of sound generation. In this paper we formulate
a source function based on a small pulsating sphere model. A physically plausible method to inject a source signal into the grid
is derived from first principles, resulting in a source with a near-flat spectrum that does not scatter incoming waves. In the final
discrete-time formulation, the source signal is the result of passing a Gaussian pulse through a digital filter simulating the dynamics of the pulsating sphere, hence facilitating a physically correct means to design source functions that generate a prescribed sound field.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.