209 resultados para Compute unified device architectures
Resumo:
A microfluidic device designed for electrochemical studies on a microliter scale has been utilized for the examination of impurity levels in ionic liquids (ILs). Halide impurities are common following IL synthesis, and this study demonstrates the ability to quantify low concentrations of halide in a range of ILs to levels of similar to 5 ppm, even in ILs not currently measurable using other methods such as ion chromatography. To validate the mixer device, the electrochemistry of ferrocene was also examined and compared with spectroscopic and bulk electrochemistry measurements. An automated
Resumo:
This paper outlines the design and development of a Java-based, unified and flexible natural language dialogue system that enables users to interact using natural language, e.g. speech. A number of software development issues are considered with the aim of designing an architecture that enables different discourse components to be readily and flexibly combined in a manner that permits information to be easily shared. Use of XML schemas assists this component interaction. The paper describes how a range of Java language features were employed to support the development of the architecture, providing an illustration of how a modern programming language makes tractable the development of a complex dialogue system.
Resumo:
There are now more than 1200 papers a year describing research results using the 'neoteric' solvents, known as ionic liquids (ILs). If ILs are such highly studied solvents, why has there been so comparatively little research in their use in crystallization? Here we explore this question and discuss possible strategies for utilization of the mundane and the unique aspects of ILs for novel crystallization strategies including crystallization of high and low melting solids using thermal shifts; ''solvothermal'' techniques; slow diffusion; electrocrystallization; and use of a co-solvent. The results presented here and those appearing in the literature indicate both the complex nature of these solvents and their promise in delivering unique solvation, metal ion coordination numbers, coordination polymer motifs, and metal-anion interactions, to name but a few. These complex, but fascinating, results and the promise of much more intimate control over crystallization processes will drive a growing interest in using ILs as crystallization solvents.
Resumo:
The three-dimensional (3D) weaving process offers the ability to tailor the mechanical properties via design of the weave architecture. One repeat of the 3D woven fabric is represented by the unit cell. The model accepts basic weaver and material manufacturer data as inputs in order to calculate the geometric characteristics of the 3D woven unit cell. The specific weave architecture manufactured and subsequently modelled had an angle interlock type binding configuration. The modelled result was shown to have a close approximation compared to the experimentally measured values and highlighted the importance of the representation of the binder tow path.
Resumo:
Haptic information originates from a different human sense (touch), therefore the quality of service (QoS) required to supporthaptic traffic is significantly different from that used to support conventional real-time traffic such as voice or video. Each type ofnetwork impairment has different (and severe) impacts on the user’s haptic experience. There has been no specific provision of QoSparameters for haptic interaction. Previous research into distributed haptic virtual environments (DHVEs) have concentrated onsynchronization of positions (haptic device or virtual objects), and are based on client-server architectures.We present a new peerto-peer DHVE architecture that further extends this to enable force interactions between two users whereby force data are sent tothe remote peer in addition to positional information. The work presented involves both simulation and practical experimentationwhere multimodal data is transmitted over a QoS-enabled IP network. Both forms of experiment produce consistent results whichshow that the use of specific QoS classes for haptic traffic will reduce network delay and jitter, leading to improvements in users’haptic experiences with these types of applications.
Resumo:
We consider a cavity with a vibrating end mirror and coupled to a Bose-Einstein condensate. The cavity field mediates the interplay between mirror and collective oscillations of the atomic density. We study the implications of this dynamics and the possibility of an indirect diagnostic. Our predictions can be observed in a realistic setup that is central to the current quest for mesoscopic quantumness.
Resumo:
An efficient ring rearrangement metathesis (RRM) approach to the synthesis of benzo[b]quinolizine and benzoindolizine systems from N-propargyl-phenanthridine derivatives is reported. A Hovel use of flash vacuum pyrolysis (FVP) for the Boc-deprotection of acid-sensitive substrates is also disclosed.