50 resultados para Compressive and flexural behavior
Resumo:
While the repeated nature of Discrete Choice Experiments is advantageous from a sampling efficiency perspective, patterns of choice may differ across the tasks, due, in part, to learning and fatigue. Using probabilistic decision process models, we find in a field study that learning and fatigue behavior may only be exhibited by a small subset of respondents. Most respondents in our sample show preference and variance stability consistent with rational pre-existent and
well formed preferences. Nearly all of the remainder exhibit both learning and fatigue effects. An important aspect of our approach is that it enables learning and fatigue effects to be explored, even though they were not envisaged during survey design or data collection.
Resumo:
The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is now possible to print engineering structures. This paper presents a study of the mechanical behavior of 3D printed structures using cementitious powder. Microscopic observation reveals that the 3D printed products have a layered orthotropic microstructure, in which each layer consists of parallel strips. Compression and flexural tests were conducted to determine the mechanical properties and failure characteristics of such materials. The test results confirmed that the 3D printed structures are laminated with apparent orthotropy. Based on the experimental results, a stress-strain relationship and a failure criterion based on the maximum stress criterion for orthotropic materials are proposed for the structures of 3D printed material. Finally, a finite element analysis was conducted for a 3D printed shell structure, which shows that the printing direction has a significant influence on the load bearing capacity of the structure.
Resumo:
Research has shown that fibre reinforced polymer (FRP) wraps are effective for strengthening concrete columns for increased axial and flexural load and deformation capacity, and this technique is now used around the world. The experimental study presented in this paper is focused on the mechanics of FRP confined concrete, with a particular emphasis on the influence of the unconfined concrete compressive strength on confinement effectiveness and hoop strain efficiency. An experimental programme was undertaken to study the compressive strength and stress-strain behaviour of unconfined and FRP confined concrete cylinders of different concrete strength but otherwise similar mix designs, aggregates, and constituents. This was accomplished by varying only the water-to-cement ratio during concrete mixing operations. Through the use of high-resolution digital image correlation to measure both axial and hoop strains, the observations yield insights into the mechanics of FRP confinement of concretes of similar composition but with varying unconfined concrete compressive strength.
Resumo:
This paper investigates the effects of polyethylene glycol (PEG), on the mechanical and thermal properties of nalidixic acid/ploy ε-caprolactone (NA)/PCL blends prepared by hot melt extrusion. The blends were characterized by tensile and flexural analysis, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. Experimental data indicated that the addition of NA caused loss of the tensile strength and toughness of PCL. Thermal analysis of the PCL showed that on addition of the thermally unstable NA, thermal degradation occurred early and was autocatalytic. However, the NA did benefit from the heat shielding provided by the PCL matrix resulting in more thermally stable NA particles. Results show that loading PEG in the PCL had a detrimental effect on the tensile strength and toughness of the blends, reducing them by 20-40%. The partial miscibility of the PCL-PEG system, causes an increase in Tg. While increases in the crystallinity is attributed to the plasticisation effect of PEG and the nucleation effect of NA. The average crystal size increased by 8% upon PEG addition.
Resumo:
Food preparation and storage behaviors in the home deviating from the ‘best practice’ food safety recommendations may result in food borne illnesses. Currently, there are limited tools available to fully evaluate the consumer knowledge, perceptions and behavior in the area of refrigerator safety. The current study aimed to develop a valid and reliable tool in the form of a questionnaire (CFSQCRSQ) for assessing systematically all these aspects. Items relating to refrigerator safety knowledge (n=17), perceptions (n=46), reported behavior (n=30) were developed and pilot tested by an expert reference group and various consumer groups to assess face and content validity (n=20), item difficulty and item consistency (n=55) and construct validity (n=23). The findings showed that the CFSQCRSQ has acceptable face and content validity with acceptable levels of item difficulty. Item consistency was observed for 12 out of 15 refrigerator safety knowledge. Further, all five of the subscales of consumer perceptions of refrigerator safety practices relating to risk of developing foodborne disease food poisoning showed acceptable internal consistency (Cronbach’s α value > 0.8). Construct validity of the CFSQCRSQ was shown to be very good (p=0.022). The CFSQCRSQ exhibited acceptable test-retest reliability at 14 days with majority of knowledge items (93.3%) and reported behavior items (96.4%) having correlation coefficients of greater than 0.70. Overall, the CFSQCRSQ was deemed valid and reliable in assessing refrigerator safety knowledge and behavior and therefore has the potential for future use in identifying groups of individuals at increased risk of deviating from recommended refrigerator safety practices as well as the assessment of refrigerator safety knowledge, behavior for use before and after an intervention.