169 resultados para Collisions réplication-transcription


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elevated levels of beta1,4-galactosyltransferase I (GalT I; EC 2.4.1.38) are detected in highly metastatic lung cancer PGBE1 cells compared with its less metastatic partner PGLH7 cells. Decreasing the GalT I surface expression by small interfering RNA or interfering with the surface of GalT I function by mutation inhibited cell adhesion on laminin, the invasive potential in vitro, and tyrosine phosphorylation of focal adhesion kinase. The mechanism by which GalT I activity is up-regulated in highly metastatic cells remains unclear. To investigate the regulation of GalT I expression, we cloned the 5'-region flanking the transcription start point of the GalT I gene (-1653 to +52). Cotransfection of the GalT I promoter/luciferase reporter and the Ets family protein E1AF expression plasmid increased the luciferase reporter activity in a dose-dependent manner. By deletion and mutation analyses, we identified an Ets-binding site between nucleotides -205 and -200 in the GalT I promoter that was critical for responsiveness to E1AF. It was identified that E1AF could bind to and activate the GalT I promoter by electrophoretic mobility shift assay in PGLH7 cells and COS1 cells. A stronger affinity of E1AF for DNA has contributed to the elevated expression of GalT I in PGBE1 cells. Stable transfection of the E1AF expression plasmid resulted in increased GalT I expression in PGLH7 cells, and stable transfectants migrated faster than control cells. Meanwhile, the content of the beta1,4-Gal branch on the cell surface was increased in stably transfected PGLH7 cells. GalT I expression can also be induced by epidermal growth factor and dominant active Ras, JNK1, and ERK1. These data suggest an essential role for E1AF in the activation of the human GalT I gene in highly metastatic lung cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Translational energy spectroscopy (TES) has been used to study one-electron capture by He2+, C4+, and O6+ ions in collisions with CH4 within the range 200 - 2000 eV amu—1. In each case the main collisions mechanisms and product channels have been identified. The measurements reveal significant differences in the way the dissociative and non-dissociative mechanisms contribute to electron capture. However, in all cases, the highly selective nature of the charge transfer process is confirmed in spite of the wide range of energy defects associated with possible product channels.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constitutive activation of nuclear factor (NF)-kappa B is linked with the intrinsic resistance of androgen-independent prostate cancer (AIPC) to cytotoxic chemotherapy. Interleukin-8 (CXCL8) is a transcriptional target of NF-kappa B whose expression is elevated in AIPC. This study sought to determine the significance of CXCL8 signaling in regulating the response of AIPC cells to oxaliplatin, a drug whose activity is reportedly sensitive to NF-kappa B activity. Administration of oxaliplatin to PC3 and DU145 cells increased NF-kappa B activity, promoting antiapoptotic gene transcription. In addition, oxaliplatin increased the transcription and secretion of CXCL8 and the related CXC-chemokine CXCL1 and increased the transcription and expression of CXC-chemokine receptors, especially CXC-chemokine receptor (CXCR) 2, which transduces the biological effects of CXCL8 and CXCL1. Stimulation of AIPC cells with CXCL8 potentiated NF-kappa B activation in AIPC cells, increasing the transcription and expression of NF-kappa B-regulated antiapoptotic genes of the Bcl-2 and IAP families. Coadministration of a CXCR2-selective antagonist, AZ10397767 (Bioorg Med Chem Lett 18:798-803, 2008), attenuated oxaliplatin-induced NF-kappa B activation, increased oxaliplatin cytotoxicity, and potentiated oxaliplatin-induced apoptosis in AIPC cells. Pharmacological inhibition of NF-kappa B or RNA interference-mediated suppression of Bcl-2 and survivin was also shown to sensitize AIPC cells to oxaliplatin. Our results further support NF-kappa B activity as an important determinant of cancer cell sensitivity to oxaliplatin and identify the induction of autocrine CXCR2 signaling as a novel mode of resistance to this drug.