74 resultados para Cold atmospheric plasma
Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.
Resumo:
The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.
Resumo:
Chronic lung infection with bacteria from the Burkholderia cepacia complex (BCC), and in particular B. cenocepacia, is associated with significant morbidity and mortality in patients with cystic fibrosis (CF). B. cenocepacia can spread from person to person and exhibits intrinsic broad-spectrum antibiotic resistance. Recently, atmospheric pressure non-thermal plasmas (APNTPs) have gained increasing attention as a novel approach to the prevention and treatment of a variety of hospital-acquired infections. In this study, we evaluated an in-house-designed kHz-driven plasma source for the treatment of biofilms of a number of clinical CF B. cenocepacia isolates. The results demonstrated that APNTP is an effective and efficient tool for the eradication of B. cenocepacia biofilms but that efficacy is highly variable across different isolates. Determination of phenotypic differences between isolates in an attempt to understand variability in plasma tolerance revealed that isolates which are highly tolerant to APNTP typically produce biofilms of greater biomass than their more sensitive counterparts. This indicates a potential role for biofilm matrix components in biofilm tolerance to APNTP exposure. Furthermore, significant isolate-dependent differences in catalase activity in planktonic bacteria positively correlated with phenotypic resistance to APNTP by isolates grown in biofilms.
Resumo:
To characterize non-thermal atmospheric pressure plasmas experimentally, a large variety of methods and techniques is available, each having its own specific possibilities and limitations. A rewarding method to investigate these plasma sources is laser Thomson scattering. However, that is challenging. Non-thermal atmospheric pressure plasmas (gas temperatures close to room temperature and electron temperatures of a few eV) have usually small dimensions (below 1 mm) and a low degree of ionization (below 10-4). Here an overview is presented of how Thomson scattering can be applied to such plasmas and used to measure directly spatially and temporally resolved the electron density and energy distribution. A general description of the scattering of photons and the guidelines for an experimental setup of this active diagnostic are provided. Special attention is given to the design concepts required to achieve the maximum signal photon flux with a minimum of unwanted signals. Recent results from the literature are also presented and discussed.
Resumo:
To visualize the development of an atmospheric pressure glow discharge in He and the influence of polymer film on the discharge, short exposure time images were recorded using a gated intensified charge coupled detector. If the polymer film is stretched in the middle of the gap, a discharge region on each side of the polymer is created with the characteristic structure of a glow discharge. In this case, strongly asymmetric discharge current pulses can be generated depending on the frequency and the applied voltage.
Resumo:
The characterization of a direct current, low-pressure, and high-density reflex discharge plasma source operating in argon and in nitrogen, over a range of pressures 1.0-10(-2) mbar, discharge currents 20-200 mA, and magnetic fields 0-120 G, and its parametric characterization is presented. Both external parameters, such as the breakdown potential and the discharge voltage-current characteristic, and internal parameters, like the charge carrier's temperature and density, plasma potential, floating potential, and electron energy distribution function, were measured. The electron energy distribution functions are bi-Maxwellian, but some structure is observed in these functions in nitrogen plasmas. There is experimental evidence for the existence of three groups of electrons within this reflex discharge plasma. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the density of the cold group of electrons is as high as 10(18) m(-3), and the temperature is as low as a few tenths of an electron volt. The bulk plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of electric field. (C) 2002 American Institute of Physics.
Resumo:
Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.
Resumo:
Diagnostic based modelling (DBM) actively combines complementary advantages of numerical plasma simulations and relatively simple optical emission spectroscopy (OES). DBM is employed to determine absolute atomic oxygen ground state densities in a helium–oxygen radio-frequency driven atmospheric pressure plasma jet. A comparatively simple one-dimensional simulation yields detailed information on electron properties governing the population dynamics of excited states. Important characteristics of the electron dynamics are found to be largely insensitive to details of the chemical composition and to be in very good agreement with space and phase-resolved OES. Benchmarking the time and space resolved simulation allows us to subsequently derive effective excitation rates as the basis for DBM with simple space and time integrated OES. The population dynamics of the upper O 3p 3P (? = 844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through tracer comparison with the upper Ar 2p1 (? = 750.4 nm) state. The presented results for the atomic oxygen density show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.
Resumo:
Plasma ionization, and associated mode transitions, in dual radio-frequency driven atmospheric pressure plasmas are governed through nonlinear frequency coupling in the dynamics of the plasma boundary sheath. Ionization in low-power mode is determined by the nonlinear coupling of electron heating and the momentary local plasma density. Ionization in high-power mode is driven by electron avalanches during phases of transient high electric fields within the boundary sheath. The transition between these distinctly different modes is controlled by the total voltage of both frequency components.
Resumo:
The role of roughening and functionalization processes involved in modifying the wettability of poly(e-caprolactone) (PCL) after treatment by an atmospheric pressure glow discharge plasma is discussed. The change in the ratio of Cdouble bond; length as m-dashO/C–O bonds is a significant factor influencing the wettability of PCL. As the contact angle decreases, the level of Cdouble bond; length as m-dashO bonds tends to rise. Surface roughness alterations are the driving force for lasting increases in wettability, while the surface functional species are shorter lived. We can approximate from ageing that the increase in wettability for PCL after plasma treatment is 55–60% due to roughening and 40–45% due to surface functionalization for the plasma device investigated.
Resumo:
The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of electron-acoustic waves (EAWs) propagating in space plasmas whose constituents are inertial cold electrons, Boltzmann distributed hot electrons, and stationary ions. Perturbations oblique to the carrier EAW propagation direction have been considered. The stability analysis, based on a nonlinear Schrodinger equation, reveals that the EAW may become unstable; the stability criteria depend on the angle theta between the modulation and propagation directions. Different types of localized EA excitations are shown to exist.
Resumo:
Theoretical and numerical studies are presented of the amplitude modulation of ion-acoustic waves (IAWs) in a plasma consisting of warm ions, Maxwellian electrons, and a cold electron beam. Perturbations parallel to the carrier IAW propagation direction have been investigated. The existence of four distinct linear ion acoustic modes is shown, each of which possesses a different behavior from the modulational stability point of view. The stability analysis, based on a nonlinear Schrodinger equation (NLSE) reveals that the IAW may become unstable. The stability criteria depend on the IAW carrier wave number, and also on the ion temperature, the beam velocity and the beam electron density. Furthermore, the occurrence of localized envelope structures (solitons) is investigated, from first principles. The numerical analysis shows that the two first modes (essentially IAWs, modified due to the beam) present a complex behavior, essentially characterized by modulational stability for large wavelengths and instability for shorter ones. Dark-type envelope excitations (voids, holes) occur in the former case, while bright-type ones (pulses) appear in the latter. The latter two modes are characterized by an intrinsic instability, as the frequency develops a finite imaginary part for small ionic temperature values. At intermediate temperatures, both bright- and dark-type excitations may exist, although the numerical landscape is intertwined between stability and instability regions.(c) 2006 American Institute of Physics.
Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic, and hot constituents
Resumo:
Large nonlinear acoustic waves are discussed in a four-component plasma, made up of two superhot isothermal species, and two species with lower thermal velocities, being, respectively, adiabatic and cold. First a model is considered in which the isothermal species are electrons and ions, while the cooler species are positive and/or negative dust. Using a Sagdeev pseudopotential formalism, large dust-acoustic structures have been studied in a systematic way, to delimit the compositional parameter space in which they can be found, without restrictions on the charges and masses of the dust species and their charge signs. Solitary waves can only occur for nonlinear structure velocities smaller than the adiabatic dust thermal velocity, leading to a novel dust-acoustic-like mode based on the interplay between the two dust species. If the cold and adiabatic dust are oppositely charged, only solitary waves exist, having the polarity of the cold dust, their parameter range being limited by infinite compression of the cold dust. However, when the charges of the cold and adiabatic species have the same sign, solitary structures are limited for increasing Mach numbers successively by infinite cold dust compression, by encountering the adiabatic dust sonic point, and by the occurrence of double layers. The latter have, for smaller Mach numbers, the same polarity as the charged dust, but switch at the high Mach number end to the opposite polarity. Typical Sagdeev pseudopotentials and solitary wave profiles have been presented. Finally, the analysis has nowhere used the assumption that the dust would be much more massive than the ions and hence, one or both dust species can easily be replaced by positive and/or negative ions and the conclusions will apply to that plasma model equally well. This would cover a number of different scenarios, such as, for example, very hot electrons and ions, together with a mix of adiabatic ions and dust (of either polarity) or a very hot electron-positron mix, together with a two-ion mix or together with adiabatic ions and cold dust (both of either charge sign), to name but some of the possible plasma compositions.
Resumo:
Dust ion acoustic solitons in an unmagnetized dusty plasma comprising cold dust particles, adiabatic fluid ions, and electrons satisfying a kappa distribution are investigated using both small amplitude and arbitrary amplitude techniques. Their existence domain is discussed in the parameter space of Mach number M and electron density fraction f over a wide range of values of kappa. For all kappa > 3/2, including the Maxwellian distribution, negative dust supports solitons of both polarities over a range in f. In that region of parameter space solitary structures of finite amplitude can be obtained even at the lowest Mach number, the acoustic speed, for all kappa. These cannot be found from small amplitude theories. This surprising behavior is investigated, and it is shown that f(c), the value of f at which the KdV coefficient A vanishes, plays a critical role. In the presence of positive dust, only positive potential solitons are found. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3400229]