91 resultados para Circle-squaring
Resumo:
We present optical and infrared observations of the unusual Type Ia supernova (SN) 2004eo. The light curves and spectra closely resemble those of the prototypical SN 1992A, and the luminosity at maximum (M-B = -19.08) is close to the average for a Type Ia supernova (SN Ia). However, the ejected Ni-56 mass derived by modelling the bolometric light curve (about 0.45M(circle dot)) lies near the lower limit of the Ni-56 mass distribution observed in normal SNe Ia. Accordingly, SN 2004eo shows a relatively rapid post-maximum decline in the light curve [Delta m(15)(B)(true) = 1.46], small expansion velocities in the ejecta and a depth ratio Si II lambda 5972/ Si II lambda 6355 similar to that of SN 1992A. The physical properties of SN 2004eo cause it to fall very close to the boundary between the faint, low-velocity gradient and high-velocity gradient subgroups proposed by Benetti et al. Similar behaviour is seen in a few other SNe Ia. Thus, there may in fact exist a few SNe Ia with intermediate physical properties.
Resumo:
Extensive light and colour curves for the Type Ia supernova (SN Ia) SN 2002er are presented as part of the European Supernova Collaboration. We have collected UBVRI photometry from 11 different telescopes covering the phases from 7 d before until 619 d after maximum light. Corrections for the different instrumental systems and the non-thermal spectrum of the supernova (S-corrections) have been applied. With the densely sampled light curves we can make detailed comparisons to other well-observed objects. SN 2002er most closely resembles SN 1996X after maximum, but clearly shows a different colour evolution before peak light and a stronger shoulder in V and R bands compared to other well-observed SNe Ia. In particular, the rise time appears to be longer than what is expected from the rise time versus decline rate relation. We use several methods to determine the reddening towards SN 2002er based on the colour evolution at near peak and at late phases. The uvoir (bolometric) light curve shows great similarity with SN 1996X, but also indications of a higher luminosity, longer rise time and a more pronounced shoulder 25 d past maximum. The interpretation of the light curves was carried out with two independent light curve codes. Both find that given the luminosity of SN 2002er the Ni-56 mass exceeds 0.6 M-circle dot with preferred values near 0.7 M-circle dot. Uncertainties in the exact distance to SN 2002er are the most serious limitation of this measurement. The light-curve modelling also indicates a high level of mixing of the nickel in the explosion of SN 2002er.
Resumo:
Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [O-I] lambda lambda 6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0 M-circle dot, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3 M-circle dot of Ni-56 has been synthesized in the explosion. No connection to a GRB can be firmly established.
Resumo:
We present the discovery of WASP-39b, a highly inflated transiting Saturn-mass planet orbiting a late G-type dwarf star with a period of 4.055259 +/- 0.000008 d, Transit Epoch T-0 = 2 455 342.9688 +/- 0.0002 (HJD), of duration 0.1168 +/- 0.0008 d. A combined analysis of the WASP photometry, high-precision follow-up transit photometry, and radial velocities yield a planetary mass of M-pl = 0.28 +/- 0.03 M-J and a radius of R-pl = 1.27 +/- 0.04 R-J, resulting in a mean density of 0.14 +/- 0.02 rho(J). The stellar parameters are mass M-star = 0.93 +/- 0.03 M-circle dot, radius R-star = 0.895 +/- 0.23 R-circle dot, and age 9(-4)(+3) Gyr. Only WASP-17b and WASP-31b have lower densities than WASP-39b, although they are slightly more massive and highly irradiated planets. From our spectral analysis, the metallicity of WASP-39 is measured to be [Fe/H] = -0.12 +/- 0.1 dex, and we find the planet to have an equilibrium temperature of 1116(-32)(+33) K. Both values strengthen the observed empirical correlation between these parameters and the planetary radius for the known transiting Saturn-mass planets.
Resumo:
The pre-explosion observations of the Type II-P supernovae 2006my, 2006ov and 2004et are re-analysed. In the cases of supernovae 2006my and 2006ov we argue that the published candidate progenitors are not coincident with their respective supernova sites in pre-explosion Hubble Space Telescope observations. We therefore derive upper luminosity and mass limits for the unseen progenitors of both these supernovae, assuming they are red supergiants: 2006my (log L/L-circle dot = 4.51; m
Resumo:
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova (SN) has converged to 8 +/- 1 M-circle dot from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc SNe arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic SNe are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above similar to 20 M-circle dot may collapse quietly to black holes and that the explosions remain undetected. The recent discovery of a class of ultrabright type H SNe and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggest some very massive stars do produce highly energetic explosions. The physical mechanism is under debate, and these SNe pose a challenge to stellar evolutionary theory.
Resumo:
We present new optical and near-infrared (NIR) photometry and spectroscopy of the Type IIP supernova (SN), SN 2004et. In combination with already published data, this provides one of the most complete studies of optical and NIR data for any Type IIP SN from just after explosion to +500 d. The contribution of the NIR flux to the bolometric light curve is estimated to increase from 15 per cent at explosion to around 50 per cent at the end of the plateau and then declines to 40 per cent at 300 d. SN 2004et is one of the most luminous IIP SNe which has been well studied and characterized, and with a luminosity of log L = 42.3 erg s-1 and a 56Ni mass of 0.06 +/- 0.04 M-circle dot, it is two times brighter than SN 1999em. We provide parametrized bolometric corrections as a function of time since explosion for SN 2004et and three other IIP SNe that have extensive optical and NIR data. These can be used as templates for future events in optical and NIR surveys without full wavelength coverage. We compare the physical parameters of SN 2004et with those of other well-studied IIP SNe and find that the kinetic energies span a range of 1050-1051 erg. We compare the ejected masses calculated from hydrodynamic models with the progenitor masses and limits derived from pre-discovery images. Some of the ejected mass estimates are significantly higher than the progenitor mass estimates, with SN 2004et showing perhaps the most serious mass discrepancy. With the current models, it appears difficult to reconcile 100 d plateau lengths and high expansion velocities with the low ejected masses of 5-6 M-circle dot implied from 7-8 M-circle dot progenitors. The nebular phase is studied using very late-time Hubble Space Telescope photometry, along with optical and NIR spectroscopy. The light curve shows a clear flattening at 600 d in the optical and the NIR, which is likely due to the ejecta impacting on circumstellar material. We further show that the [O i] 6300, 6364 A line strengths in the nebular spectra of four Type IIP SNe imply ejected oxygen masses of 0.5-1.5 M-circle dot.
Resumo:
We identify a source coincident with SN 2009kr in Hubble Space Telescope pre-explosion images. The object appears to be a single point source with an intrinsic color V - I = 1.1 +/- 0.25 and M-V = -7.6 +/- 0.6. If this is a single star, it would be a yellow supergiant of log L/L-circle dot similar to 5.1 and a mass of 15(-4)(+5) M-circle dot. The spatial resolution does not allow us yet to definitively determine if the progenitor object is a single star, a binary system, or a compact cluster. We show that the early light curve is similar to a Type IIL SN, but the prominent H alpha P-Cygni profiles and the signature of the end of a recombination phase are reminiscent of a Type IIP. The evolution of the expanding ejecta will play an important role in understanding the progenitor object.
Resumo:
We present the results of the one-year long observational campaign of the type 11 plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, Ni-56-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km s(-1)) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 cl. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light Curve for an object of this class. Finally. comparing the observed data withthose derived front it semi-analytic model, we infer for SN 2005cs a Ni-56 mass of about 3 x 10(-3) M-circle dot a total ejected mass of 8-13 M-circle dot and an explosion energy of about 3 x 10(50) erg.
Resumo:
We report the identification of a source coincident with the position of the nearby Type II-P supernova (SN) 2008bk in high-quality optical and near-infrared preexplosion images from the ESO Very Large Telescope (VLT). The SN position in the optical and near-infrared preexplosion images is identified to within about +/- 70 and +/- 40 mas, respectively, using postexplosion-band images obtained with the NAOS CONICA adaptive optics system K-s on the VLT. The preexplosion source detected in four different bands is precisely coincident with SN 2008bk and is consistent with being dominated by a single point source. We determine the nature of the point source using the STARS stellar evolutionary models and find that its colors and luminosity are consistent with the source being a red supergiant progenitor of SN 2008bk with an initial mass of 8.5 +/- 1.0 M-circle dot.
Resumo:
The blue supergiant Sher 25 is surrounded by an asymmetric, hourglass-shaped circumsteller nebula. Its structure and dynamics have been studied previously through high-resolution imaging and spectroscopy, and it appears dynamically similar to the ring structure around SN 1987A. Here, we present long-slit spectroscopy of the circumstellar nebula around Sher 25, and of the background nebula of the host cluster NGC 3603. We perform a detailed nebular abundance analysis to measure the gas-phase abundances of oxygen, nitrogen, sulphur, neon and argon. The oxygen abundance in the circumstellar nebula (12 + log O/H = 8.61 +/- 0.13 dex) is similar to that in the background nebula (8.56 +/- 0.07), suggesting that the composition of the host cluster is around solar. However, we confirm that the circumsteller nebula is very rich in nitrogen, with an abundance of 8.91 +/- 0.15, compared to the background value of 7.47 +/- 0.18. A new analysis of the stellar spectrum With the FASTWIND model atmosphere code suggests that the photospheric nitrogen and oxygen abundances in Sher 25 are consistent with the nebular results. While the nitrogen abundances are high, when compared to stellar evolutionary models, they do not unambiguously confirm that the star has undergone convective dredge-up during a previous red supergiant phase. We suggest that the more likely scenario is that the nebula was ejected from the star while it was in the blue supergiant phase. The star's initial mass was around 50 M-circle dot which is rather too high for it to have had a convective envelope stage as a red supergiant. Rotating stellar models that lead to mixing of core-processed material to the stellar surface during core H-burning can quantitatively match the stellar results with the nebula abundances.
Resumo:
We report our attempts to locate the progenitor of the peculiar Type Ic SN 2007gr in Hubble Space Telescope (HST) preexplosion images of the host galaxy, NGC 1058. Aligning adaptive optics Altair/NIRI imaging of SN 2007gr from the Gemini ( North) Telescope with the preexplosion HST WFPC2 images, we identify the supernova (SN) position on the HST frames with an accuracy of 20 mas. Although nothing is detected at the SN position, we show that it lies on the edge of a bright source 134 +/- 23 mas (6.9 pc) from its nominal center. On the basis of its luminosity, we suggest that this object is possibly an unresolved, compact, and coeval cluster and that the SN progenitor was a cluster member, although we note that model profile fitting favors a single bright star. We find two solutions for the age of this assumed cluster: 7 -/+ 0.5 Myr and 20 - 30 Myr, with turnoff masses of 28 +/- M-circle dot and 12 - 9 M-circle dot, respectively. Preexplosion ground-based K- band images marginally favor the younger cluster 4 age/higher turnoff mass. Assuming the SN progenitor was a cluster member, the turnoff mass provides the best estimate for its initial mass. More detailed observations, after the SN has faded, should determine whether the progenitor was indeed part of a cluster and, if so, allow an age estimate to within similar to 2 Myr, thereby favoring either a high-mass single star or lower-mass interacting binary progenitor.
Resumo:
Images of the site of the Type Ic supernova (SN) 2002ap taken before explosion were analysed previously by Smartt et al. We have uncovered new unpublished, archival pre-explosion images from the Canada-France-Hawaii Telescope (CFHT) that are vastly superior in depth and image quality. In this paper we present a further search for the progenitor star of this unusual Type Ic SN. Aligning high-resolution Hubble Space Telescope observations of the SN itself with the archival CFHT images allowed us to pinpoint the location of the progenitor site on the groundbased observations. We find that a source visible in the B- and R-band pre-explosion images close to the position of the SN is (1) not coincident with the SN position within the uncertainties of our relative astrometry and (2) is still visible similar to 4.7-yr post-explosion in late-time observations taken with the William Herschel Telescope. We therefore conclude that it is not the progenitor of SN 2002ap. We derived absolute limiting magnitudes for the progenitor of M-B >= -4.2 +/- 0.5 and M-R >= -5.1 +/- 0.5. These are the deepest limits yet placed on a Type Ic SN progenitor. We rule out all massive stars with initial masses greater than 7-8 M-circle dot (the lower mass limit for stars to undergo core collapse) that have not evolved to become Wolf-Rayet stars. This is consistent with the prediction that Type Ic SNe should result from the explosions of Wolf-Rayet stars. Comparing our luminosity limits with stellar models of single stars at appropriate metallicity (Z = 0.008) and with standard mass-loss rates, we find no model that produces a Wolf-Rayet star of low enough mass and luminosity to be classed as a viable progenitor. Models with twice the standard mass-loss rates provide possible single star progenitors but all are initially more massive than 30-40 M-circle dot. We conclude that any single star progenitor must have experienced at least twice the standard mass-loss rates, been initially more massive than 30-40 M-circle dot and exploded as a Wolf-Rayet star of final mass 10-12 M-circle dot. Alternatively a progenitor star of lower initial mass may have evolved in an interacting binary system. Mazzali et al. propose such a binary scenario for the progenitor of SN 2002ap in which a star of initial mass 15-20 M-circle dot is stripped by its binary companion, becoming a 5 M-circle dot Wolf-Rayet star prior to explosion. We constrain any possible binary companion to a main-sequence star of
Resumo:
We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a power-law dependence of mass loss on metal content,. M. Z(m), and adopting a theoretical relation between the terminal flow velocity and metal content, v(infinity). Z(0.13) (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 +/- 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 105.2 L circle dot. Within the errors, this result is in agreement with the prediction m = 0.69 +/- 0.10 by Vink et al. (2001, A& A, 369, 574). Absolute empirical values for the mass loss, based on Ha and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Ha and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Ha) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L similar to 10(4.75) L circle dot, the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.
Resumo:
We have studied the optical spectra of a sample of 28 O- and early B-type stars in the Large Magellanic Cloud, 22 of which are associated with the young star forming region N11. Our observations sample the central associations of LH9 and LH10, and the surrounding regions. Stellar parameters are determined using an automated fitting method ( Mokiem et al. 2005), which combines the stellar atmosphere code fastwind ( Puls et al. 2005) with the genetic algorithm based optimisation routine PIKAIA ( Charbonneau 1995). We derive an age of 7.0 +/- 1.0 and 3.0 +/- 1.0 Myr for LH9 and LH10, respectively. The age difference and relative distance of the associations are consistent with a sequential star formation scenario in which stellar activity in LH9 triggered the formation of LH10. Our sample contains four stars of spectral type O2. From helium and hydrogen line fitting we find the hottest three of these stars to be similar to 49- 54 kK ( compared to similar to 45- 46 kK for O3 stars). Detailed determination of the helium mass fraction reveals that the masses of helium enriched dwarfs and giants derived in our spectroscopic analysis are systematically lower than those implied by non-rotating evolutionary tracks. We interpret this as evidence for efficient rotationally enhanced mixing leading to the surfacing of primary helium and to an increase of the stellar luminosity. This result is consistent with findings for SMC stars by Mokiem et al. ( 2006). For bright giants and supergiants no such mass discrepancy is found; these stars therefore appear to follow tracks of modestly or non-rotating objects. The set of programme stars was sufficiently large to establish the mass loss rates of OB stars in this Z similar to 1/2 Z(circle dot) environment sufficiently accurate to allow for a quantitative comparison with similar objects in the Galaxy and the SMC. The mass loss properties are found to be intermediate to massive stars in the Galaxy and SMC. Comparing the derived modified wind momenta D-mom as a function of luminosity with predictions for LMC metallicities by Vink et al. ( 2001) yields good agreement in the entire luminosity range that was investigated, i.e. 5.0