80 resultados para Chlormequat chloride
Resumo:
A forest ecosystem was contaminated as a result of a fire involving 600 t of PVC. A wide range of 2,3,7,8-substituted dioxin and furan congeners were elevated (by up to 4-fold) on soil adjacent to the factory compared to a site 200 m from the factory perimeter. Livers of wood mice (Apodemus sylvaticus) caught on these areas were also analysed for dioxins and furans. Toxic equivalents (TEQs) were 9-fold higher in wood mice caught on the site 10 m from the factory perimeter compared with the site 200 m from the perimeter, with individual 2,3,7,8-substituted congeners being elevated by up to 30-fold. Wood mouse liver TEQs were found to be highly correlated with cadmium kidney concentrations, cadmium also being found at elevated concentrations at the accident site. There was also a significant positive correlation between wood mouse liver TEQs and relative liver weights (wet weights expressed as a percentage of total body weight). The results of this study are discussed in the wider context of dioxin contamination in the environment.
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
A range of chloroplumbate(II) organic salts, based on the two cations, 1-ethyl-3-methylimidazolium and trihexyl(tetradecyl) phosphonium, was prepared by ionothermal synthesis. Depending on the structure of the organic cation and on the molar ratio of PbCl2 in the product,.PbCl2, the salts were room-temperature ionic liquids or crystalline organic/inorganic hybrid materials. The solids were studied using Raman spectroscopy; the crystal structure of [C(2)mim]{PbCl3} was determined and shown to contain 1D infinite chloroplumbate(II) strands formed by edge-sharing tetragonal pyramids of pentacoordinate (PbCl5) units. The liquids were analysed using Pb-207 NMR and Raman spectroscopies, as well as viscometry. Phase diagrams were constructed based on differential scanning calorimetry (DSC) measurements. Discrete anions: [PbCl4](2-) and [PbCl3](-), were detected in the liquid state. The trichloroplumbate(II) anion was shown to have a flexible structure due to the presence of a stereochemically-active lone pair. The relationship between the liquid phase anionic speciation and the structure of the corresponding crystalline products of ionothermal syntheses was discussed, and the data were compared with analogous tin(II) systems.
Resumo:
The model room temperature ionic liquid, 1,3-dimethylimidazolium chloride, has been studied by neutron diffraction for the first time. The diffraction data are used to derive a structural model of this liquid using Empirical Potential Structure Refinement. The model obtained indicates that significant charge ordering is present in the liquid salt and that the local order in this liquid closely resembles that found in the solid state. As in the crystal structure, hydrogen-bonding interactions between the ring hydrogens and the chloride dominate the structure. The model is compared with the data reported previously for both simple alkyl substituted imidazolium halides and binary mixtures with AlCl3. (C) 2003 American Institute of Physics.
Resumo:
Chloride is the most severe form of deterioration experienced by concrete and one of the principal sources of chlorides is sea water. However, the presence of sulfates in seawater will influence the movement of chloride ions and vice versa. This interaction is not well understood and current codes of practice provide no guidelines for such dual exposure.
An investigation to monitor combined effect of the ingress of chlorides and sulfates during a realistic 12 month wetting and drying exposure regime to simulate conditions in which multiple mode transport mechanisms are active was conducted on a variety of binders (PC, PFA and GGBS). Penetration was evaluated using water and acid soluble chloride profiles and sulfate profiles.
It was found that the nature of the exposure provided multiple modes of transport within the concrete, thus creating a complex pattern of distribution of ions. The presence of sulfates decreased the penetration of chlorides in the PC system at all ages relative to a chloride only control. The matrices containing PFA and GGBS also showed an initial decrease in chloride penetration. However, after six months the presence of sulfates then increased chloride penetration.
Resumo:
We report here the first systematic study of the effect of impurities and additives (e.g., water, chloride, and cosolvents) on the physical properties of room-temperature ionic liquids. Remarkably, it was discovered that the viscosity of mixtures was dependent mainly on the mole fraction of added molecular solvents and only to a lesser extent upon their identity, allowing viscosity changes during the course of a reaction to be entirely predictable. While the addition of such molecular solvents decreases the viscosity and density, chloride impurities, arising from the preparation of the ionic liquids, increase viscosity dramatically. The commonly used methods of preparation were validated with respect to chloride impurity.
Resumo:
Monocyclic allylic cis-1,2-diols reacted with sulfuryl chloride at 0 °C in a regio- and stereo-selective manner to give 2-chloro-1-sulfochloridates, which were hydrolysed to yield the corresponding trans-1,2-chlorohydrins. At −78 °C, with very slow addition of sulfuryl chloride, cyclic sulfates were formed in good yields, proved to be very reactive with nucleophiles and rapidly decomposed on attempted storage. Reaction of a cyclic sulfate with sodium azide yielded a trans-azidohydrin without evidence of allylic rearrangement occurring. An enantiopure bicyclic cis-1,2-diol reacted with sulfuryl chloride to give, exclusively, a trans-1,2-dichloride enantiomer with retention of configuration at the benzylic centre and inversion at the non-benzylic centre; a mechanism is presented to rationalise the observation.
Resumo:
Chloride-induced corrosion of steel in reinforced concrete structures is one of the main problems affecting their durability and it has been studied for decades, but most of them have focused on concrete without cracking or not subjected to any structural load. In fact, concrete structures are subjected to various types of loads, which lead to cracking when the tensile stress in concrete exceeds its tensile strength. Cracking could increase transport properties of concrete and accelerate the ingress of harmful substances (Cl -, O2, H2 O, CO2). This could initiate and accelerate different types of deterioration processes in concrete, including corrosion of steel reinforcement. The expansive products generated by the deterioration processes themselves can initiate cracking. The success of concrete patch repairs can also influence microcracking at the interface as well as the patch repair itself. Therefore, monitoring the development of microcracking in reinforced concrete members is extremely useful to assess the defects and deterioration in concrete structures. In this paper, concrete beams made using 4 different mixes were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce a crack with width of 0.1mmon the tension surface of beams - F 0.1) and weekly cycles of wetting (1 day)/drying (6 days) with chloride solution. The development of microcracking on the surface of concrete was monitored using the Autoclam Permeability System at every two weeks for 60 weeks. The ultrasonic pulse velocity of the concrete was also measured along the beam by using the indirect method during the test period. The results indicated that the Autoclam Permeability System was able to detect the development of microcracks caused by both sustained loading and chloride induced corrosion of steel in concrete. However, this was not the case with the ultrasonic method used in the work (indirect method applied along the beam); it was sensitive to microcracking caused by sustained loading but not due to corrosion. © 2014 Taylor & Francis Group.
Resumo:
Chloride-induced corrosion of steel is one of the most commonly found problems affecting the durability of reinforced concrete structures in both marine environment and where de-icing salt is used in winter. As the significance of micro-cracks on chloride induced corrosion is not well documented, 24 reinforced concrete beams (4 different mixes - one containing Portland cement and another containing 35% ground granulated blastfurnace slag at 0.45 and 0.65 water-binder ratios) were subjected to three levels of sustained lateral loading (0%, 50% and 100% of the load that can induce 0.1 mm wide cracks on the tension surface of beam - F0.1) in this work. The beams were then subjected to weekly cycles of wetting with 10% NaCl solution for 1 day followed by 6 days of drying at 20 (±1) °C up to an exposure period of 60 weeks. The progress of corrosion of steel was monitored using half-cell potential apparatus and linear polarisation resistance (LPR) test. These results have shown that macro-cracks (at load F0.1) and micro-cracks (at 50% of F0.1) greatly accelerated both the initiation and propagation stages of the corrosion of steel in the concrete beams. Lager crack widths for the F0.1 load cases caused higher corrosion rates initially, but after about 38 weeks of exposure, there was a decrease in the rate of corrosion. However, such trends could not be found in 50% F 0.1 group of beams. The extent of chloride ingress also was influenced by the load level. These findings suggest that the effect of micro-cracking at lower loads are very important for deciding the service life of reinforced concrete structures in chloride exposure environments. © 2014 4th International Conference on the Durability of Concrete Structures.
Resumo:
Alkali activated slag (AAS) is an alternative cementitious material. Sodium silicate solution is usually used to activate ground granulated blast furnace slag to produce AAS. As a consequence, the pore solution chemistry of AAS differs from that of Portland cement (PC). Although AAS offers many advantages over PC, such as higher strength, superior resistance to acid and sulphate environments and lower embodied carbon due to 100% PC replacement, there is a need to assess its performance against chloride induced corrosion duo to its different pore solution chemistry. For PC systems, resistivity measurement, as a type of nondestructive test, is usually used to evaluate its chloride diffusivity and the corrosion rate of the embedded steel. However, due to the different pore solution chemistry present in the different AAS systems, the application of this test in AAS concretes would be questionable as the resistivity of concrete is highly dependent on its conductivity of the pore solution. Therefore, a study was carried out using twelve AAS concretes mixes, the results of which are reported in this paper. The AAS mixes were designed with alkali concentration of 4%, 6% and 8% (Na2O% of the mass of slag) and modulus (Ms) of sodium silicate solution of 0.75, 1.00, 1.50 and 2.00. A PC concrete with the same binder content as the AAS concretes was also studied as a reference. The chloride diffusion coefficient was determined using a non-steady state chloride diffusion test (NT BUILD 443). The resistivity of the concretes before the diffusion test was also measured. Macrocell corrosion current (corrosion rate) for steel rods embedded in the concretes was measured whilst subjecting the concretes to a cyclic chloride ponding regime (1 day ponded with salt solution and 6 days drying). The results showed that the AAS concretes had lower chloride diffusivity with associated higher resistivity than the PC concrete. The measured corrosion rate was also lower for the AAS concretes. However, unlike the PC, in which a higher resistivity yields a lower diffusivity and corrosion rate, there was no relationship apparent between the resistivity and either the diffusivity or the corrosion rate of steel for the AAS concretes. This is assigned to the variation of the pore solution composition of the AAS concretes. This also means that resistivity measurements cannot be depended on for assessing the chloride induced corrosion resistance of AAS concretes.