180 resultados para Cathepsin V
Resumo:
The PKB (protein kinase B, also called Akt) family of protein kinases plays a key role in insulin signaling, cellular survival, and transformation. PKB is activated by phosphorylation on residues threonine 308, by the protein kinase PDK1, and Serine 473, by a putative serine 473 kinase. Several protein binding partners for PKB have been identified. Here, we describe a protein partner for PKB alpha termed CTMP, or carboxyl-terminal modulator protein, that binds specifically to the carboxyl-terminal regulatory domain of PKB alpha at the plasma membrane. Binding of CTMP reduces the activity of PKB alpha by inhibiting phosphorylation on serine 473 and threonine 308. Moreover, CTMP expression reverts the phenotype of v-Akt-transformed cells examined under a number of criteria including cell morphology, growth rate, and in vivo tumorigenesis. These findings identify CTMP as a negative regulatory component of the pathway controlling PKB activity.
Resumo:
Context. Electron-impact excitation collision strengths are required for the analysis and interpretation of stellar observations.
Aims. This calculation aims to provide effective collision strengths for the Mg V ion for a larger number of transitions and for a greater temperature range than previously available, using collision strength data that include contributions from resonances.
Methods. A 19-state Breit-Pauli R-matrix calculation was performed. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s22p4, 2s2p5, 2p6, 2s22p33s, and 2s22p33p. These target states give rise to 37 fine-structure levels and 666 possible transitions. The effective collision strengths were calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities.
Results. The non-zero effective collision strengths for transitions between the fine-structure levels are given for electron temperatures in the range = 3.0 - 7.0. Data for transitions among the 5 fine-structure levels arising from the 2s22p4 ground state configurations, seen in the UV range, are discussed in the paper, along with transitions in the EUV range – transitions from the ground state 3P levels to 2s2p5?3P levels. The 2s22p4?1D–2s2p5?1P transition is also noted. Data for the remaining transitions are available at the CDS.
Resumo:
Background: Neutrophil elastase (NE) activity is increased in lung diseases such as a1-antitrypsin (A1AT) deficiency and pneumonia. It has recently been shown to induce expression of cathepsin B and matrix metalloprotease 2 (MMP-2) in vitro and in a mouse model. It is postulated that increased cathepsin B and MMP-2 in acute and chronic lung diseases result from high levels of extracellular NE and that expression of these proteases could be inhibited by A1AT augmentation therapy.
Methods: Cathepsin and MMP activities were assessed in bronchoalveolar lavage (BAL) fluid from patients with A1AT deficiency, pneumonia and control subjects. Macrophages were exposed to BAL fluid rich in free NE from patients with pneumonia following pretreatment with A1AT. MMP-2, cathepsin B, secretory leucoprotease inhibitor (SLPI) and lactoferrin levels were determined in BAL fluid from A1AT-deficient patients before and after aerosolisation of A1AT.
Results: BAL fluid from both patients with pneumonia and those with A1AT deficiency containing free NE had increased cathepsin B and MMP-2 activities compared with BAL fluid from healthy volunteers. The addition of A1AT to BAL fluid from patients with pneumonia greatly reduced NE-induced cathepsin B and MMP-2 expression in macrophages in vitro. A1AT augmentation therapy to A1AT-deficient individuals also reduced cathepsin B and MMP-2 activity in BAL fluid in vivo. Furthermore, A1AT-deficient patients had higher levels of SLPI and lactoferrin after A1AT augmentation therapy.
Conclusion: These findings suggest a novel role for A1AT inhibition of NE-induced upregulation of MMP and cathepsin expression both in vitro and in vivo.
Resumo:
Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6 of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.
Resumo:
Purpose: Cathepsin S is a cysteine protease that promotes the invasion of tumor and endothelial cells during cancer progression. Here we investigated the potential to target cathepsin S using an antagonistic antibody, Fsn0503, to block these tumorigenic effects.
Experimental Design: A panel of monoclonal antibodies was raised to human cathepsin S. The effects of a selected antibody were subsequently determined using invasion and proteolysis assays. Endothelial cell tube formation and aorta sprouting assays were done to examine antiangiogenic effects. In vivo effects were also evaluated using HCT116 xenograft studies.
Results: A selected cathepsin S antibody, Fsn0503, significantly blocked invasion of a range of tumor cell lines, most significantly HCT116 colorectal carcinoma cells, through inhibition of extracellular cathepsin S–mediated proteolysis. We subsequently found enhanced expression of cathepsin S in colorectal adenocarcinoma biopsies when compared with normal colon tissue. Moreover, Fsn0503 blocked endothelial cell capillary tube formation and aortic microvascular sprouting. We further showed that administration of Fsn0503 resulted in inhibition of tumor growth and neovascularization of HCT116 xenograft tumors.
Conclusions: These results show that blocking the invasive and proangiogenic effects of cathepsin S with antibody inhibitors may have therapeutic utility upon further preclinical and clinical evaluation.
Resumo:
NA
Resumo:
Irreversible tissue damage within the cystic fibrosis (CF) lung is mediated by proteolytic enzymes during an inflammatory response. Serine proteinases, in particular neutrophil elastase (NE), have been implicated however, members of the cysteine proteinase family may also be involved. The aim of this study was to determine cathepsin B and S levels in cystic fibrosis (CF) sputum and to assess any relationship to recognized markers of inflammation such as sputum NE, interleukin-8 (IL-8), tumor necrosis factor alpha (TNF-a), urine TNF receptor 1 (TNFr1), plasma IL-6, and serum C-reactive protein (CRP). Proteinase activities were measured in the sputum of 36 clinically stable CF patients using spectrophotometric and fluorogenic assays. Immunoblots were also used to confirm enzyme activity data. All other parameters were measured by ELISA. Patients had a mean age of 27.2 (8.2) years, FEV. of 1.6 (0.79) L and BMI of 20.7 (2.8). Both cathepsin B and S activities were detected in all samples, with mean concentrations of 18.0 (13.5)?µg/ml and 1.6 (0.88)?µg/ml, respectively and were found to correlate not only with each other but with NE, TNF-a and IL-8 (in all cases .?<?0.05). Airway cathepsin B further correlated with circulatory IL-6 and CRP however, no relationship for either cathepsin was observed with urine TNFr1. This data indicates that cathepsin B and S may have important roles in the pathophysiology of CF lung disease and could have potential as markers of inflammation in future studies. Pediatr. Pulmonol. 2010; 45:860–868.
Resumo:
Carbon stable-isotope analysis showed that individual brown trout Salmo trutta in Loch Lomond adopted strategies intermediate to that of freshwater residency or anadromy, suggesting either repeated movement between freshwater and marine environments, or estuarine residency. Carbon stable-isotope (delta C-13) values from Loch Lomond brown trout muscle tissue ranged from those indicative of assimilation of purely freshwater-derived carbon to those reflecting significant utilization of marine-derived carbon. A single isotope, two-source mixing model indicated that, on average, marine C made a 33% contribution to the muscle tissue C of Loch Lomond brown trout. Nitrogen stable isotope, delta N-15, but not delta C-13 was correlated with fork length suggesting that larger fish were feeding at a higher trophic level but that marine feeding was not indicated by larger body size. These results are discussed with reference to migration patterns in other species. (c) 2008 The Authors Journal compilation (c) 2008 The Fisheries Society of the British Isles.