56 resultados para CHAOTIC VIBRATIONS
Resumo:
The Regional Cultural Centre in Letterkenny is a new 2000sqm arts center containing theatre, galleries, workshops and ancillary offices. The site is set back from the street, on high ground with good views. The form and envelope of the building was derived from geometrically connecting the site with the town’s two other main public buildings, the Cathedral (1901) and new Civic Offices (2002, also designed by MacGabhann Architects). This geometrical connection or vectors informed the geometry and shape of the building. This urban matrix of geometrically connecting three corner stones of society, namely the ecclesiastical headquarters, the administrative head quarters and the art centre helps to improve the town planning and urban design of the disparate and chaotic development that Letterkenny has become.
The large cantilever, which houses a 300sqm gallery, is aligned towards the Civic Offices, marks the entrance, and signifies a change of direction of the pedestrian route past the building, like a modern day obelisk.
The circulation routes and stairs internally provide views towards the civic offices and cathedral, thus reinforcing the connection between the three buildings and helps visitors make some sense of Letterkenny as an urban center. The main stairs and vertical circulation are contained behind the large glazed foyer, which is framed to be viewed externally like a proscenium stage, with visitors to the building passively acting their routes through the building.
Resumo:
The chemisorption and reactivity of SO2 on Pt{111} have been studied by HREELS, XPS, NEXAFS and temperature-programmed desorption. At 160 K SO2 adsorbs intact at high coverages, with eta(2) S-O coordination to the surface. On annealing to 270 K, NEXAFS indicates the SO2 molecular plane essentially perpendicular to the surface. Preadsorbed O-a reacts with SO2 to yield adsorbed SO4, identified as the key surface species responsible for SO2-promoted catalytic alkane oxidation. Coadsorbed CO or propene efficiently reduce SO2 overlayers to deposit S-a, and the implications of this for catalytic systems are discussed.
Resumo:
XPS, TPD and HREEL results indicate that molecular pyrrole is a fragile adsorbate on clean Pd{111}. At 200 K and for low coverages, the molecule remains intact and adopts an almost flat-lying geometry. With increasing coverage, pyrrole molecules tilt away from the surface and undergo N-H bond cleavage to form strongly tilted pyrrolyl (C4H4N) species. In addition, a weakly bound, strongly tilted form of molecular pyrrole is observed at coverages approaching saturation. Heating pyrrole monolayers results in desorption of similar to 15% of the overlayer as molecular pyrrole and N-a+ C4H4Na recombination with formation of hat-lying pyrrole molecules. This strongly bound species undergoes decomposition to adsorbed CN, CHx and H, leading ultimately to desorption of HCN and H-2. The implications of these results for the production of pyrrole by a heterogeneously catalysed route are discussed.
Resumo:
Darwin's On the Origin of Species has led to a theory of evolution with a mass of empirical detail on population genetics below species level, together with heated debate on the details of macroevolutionary patterns above species level. Most of the main principles are clear and generally accepted, notably that life originated once and has evolved over time by descent with modification. Here, I review the fossil and molecular phylogenetic records of the response of life on Earth to Quaternary climatic changes. I suggest that the record can be best understood in terms of the nonlinear dynamics of the relationship between genotype and phenotype, and between climate and environments. 'The origin of species' is essentially unpredictable, but is nevertheless an inevitable consequence of the way that organisms reproduce through time. The process is 'chaotic', but not 'random'. I suggest that biodiversity is best considered as continuously branching systems of lineages, where 'species' are the branch tips. The Earth's biodiversity should thus (1) be in a state of continuous increase and (2) show continuous discrepancies between genetic and morphological data in time and space. © The Palaeontological Association.
Resumo:
Ultrasonic consolidation (UC) uses high frequency (20-40KHz) mechanical vibrations to produce a solid-state metallurgical bond (weld) between metal foils. UC as a novel layered manufacturing technique is used in this research to embed reinforcing members such as silicon carbide fibers into the aluminium alloy 6061's matrices. It is known that UC induce volume and surface effect in the material it is acting on. Both effects are employed in embedding active/passive elements in the metal matrix. Whilst the process and the two effects are used and identified at macro level, what is happening at micro level is unknown and hardly studied. In this research we are investigating the phenomena occurring in the microstructure of the parts during UC process to obtain better understanding about how and why the process works. In this research, high-resolution electron backscatter diffraction is used to study the effects of the UC process on the evolution of microstructure in AA6061 with and without fibre elements. The inverse pole figures (IPF), pole figures (PF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analysed to find the effect of ultrasonic vibration and embedding fibre on the microstructure and texture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Additional plastic flow occurs around the fibre which leads to the fibre embedding. © 2008 Materials Research Society.
Resumo:
This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.
Resumo:
This study investigated how damage changes the modal parameters of a real bridge by means of a field experiment which was conducted on a real steel truss bridge consecutively subjected to four artificial damage scenarios. In the experiment, both the forced and free vibrations of the bridge were recorded, the former for identifying higher modes available exclusively and the latter for lower modes with higher resolution. Results show that modal parameters are little affected by damage causing low stress redistribution. Modal frequencies decrease as damage causing high stress redistribution is applied; such a change can be observed if the damage is at the non-nodal point of the corresponding mode shape. Mode shapes are distorted due to asymmetric damage; they show an amplification in the damaged side as damage is applied at the non-nodal point. Torsion modes become more dominant as damage is applied either asymmetrically or on an element against large design loads. © 2013 Taylor & Francis Group, London.
Resumo:
This study discusses structural damage diagnosis of real steel truss bridges by measuring trafficinduced vibration of bridges and utilizing a damage indicator derived from linear system parameters of a time series model. On-site damage experiments were carried out on real steel truss bridges. Artificial damage was applied to the bridge by severing a truss member with a cutting machine.Vehicle-induced vibrations of the bridges before and after applying damagewere measured and used in structural damage diagnosis of the bridges. Changes in the damage indicator are detected by Mahalanobis-Taguchi system (MTS) which is one of multivariate outlier analyses. The damage indicator and outlier detection was successfully applied to detect anomalies in the steel truss bridges utilizing vehicle-induced vibrations. Observations through this study demonstrate feasibility of the proposed approach for real world applications.
Resumo:
Highly excited eigenstates of atoms and ions with open f shell are chaotic superpositions of thousands, or even millions, of Hartree-Fock determinant states. The interaction between dielectronic and multielectronic configurations leads to the broadening of dielectronic recombination resonances and relative enhancement of photon emission due to opening of thousands of radiative decay channels. The radiative yield is close to 100% for electron energy <1 eV and rapidly decreases for higher energies due to opening of many autoionization channels. The same mechanism predicts suppression of photoionization and relative enhancement of the Raman scattering. Results of our calculations of the recombination rate are in agreement with the experimental data for W20+ and Au25+.
Resumo:
We present an observational and dynamical study of newly discovered main-belt comet 313P/Gibbs. We find that the object is clearly active both in observations obtained in 2014 and in precovery observations obtained in 2003 by the Sloan Digital Sky Survey, strongly suggestingthat its activity is sublimation-driven. This conclusion is supported by a photometric analysis showing an increase in the total brightness of the comet over the 2014 observing period, and dust modeling resultsshowing that the dust emission persists over at least three months during both active periods, where we find start dates for emission nolater than 2003 July 24 ± 10 for the 2003 active period and 2014 July 28 ± 10 for the 2014 active period. From serendipitous observations by the Subaru Telescope in 2004 when the object was apparently inactive, we estimate that the nucleus has an absolute R-band magnitude of HR = 17.1 ± 0.3, corresponding to aneffective nucleus radius of re ∼ 1.00 ± 0.15 km.The object’s faintness at that time means we cannot rule out the presence of activity, and so this computed radius should be consideredan upper limit. We find that 313P’s orbit is intrinsically chaotic, having a Lyapunov time of Tl = 12,000 yr and beinglocated near two three-body mean-motion resonances with Jupiter andSaturn, 11J-1S-5A and 10J+12S-7A, yet appears stable over >50 Myr in an apparent example of stable chaos. We furthermore find that 313P is the second main-belt comet, after P/2012 T1 (PANSTARRS), to belong tothe ∼155 Myr old Lixiaohua asteroid family.
Resumo:
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.