160 resultados para CANALES MIMO
Resumo:
Multiple-input-multiple-output (MIMO) radar schemes whereby the transmit array is partitioned into subarrays have recently been proposed in the literature to combine advantages of phased array and MIMO radar technology. In this work, we utilize this architecture to significantly simplify a transmit procedure in which the covariance matrix across the MIMO radar array is optimized to improve the Cramer-Rao bound (CRB) on target parameter estimation. The MIMO effective array for regular subarrayed transmit apertures is studied, and necessary conditions to obtain a filled effective aperture are presented, which is important for maintaining nonambiguous, low sidelobe beampatterns. The performance of the subarrayed transmit approach is evaluated in terms of the CRB on target parameter estimation, and the optimisation of the beamformer applied to the subarrays to minimize the CRB is considered. The subarrayed transmit scheme is found to have a CRB which is suboptimal to the full diversity transmission, as expected, but is solvable in a small fraction of the time using an iterative beamspace algorithm developed here.
Resumo:
Sphere Decoding (SD) is a highly effective detection technique for Multiple-Input Multiple-Output (MIMO) wireless communications receivers, offering quasi-optimal accuracy with relatively low computational complexity as compared to the ideal ML detector. Despite this, the computational demands of even low-complexity SD variants, such as Fixed Complexity SD (FSD), remains such that implementation on modern software-defined network equipment is a highly challenging process, and indeed real-time solutions for MIMO systems such as 4 4 16-QAM 802.11n are unreported. This paper overcomes this barrier. By exploiting large-scale networks of fine-grained softwareprogrammable processors on Field Programmable Gate Array (FPGA), a series of unique SD implementations are presented, culminating in the only single-chip, real-time quasi-optimal SD for 44 16-QAM 802.11n MIMO. Furthermore, it demonstrates that the high performance software-defined architectures which enable these implementations exhibit cost comparable to dedicated circuit architectures.
Resumo:
To enable reliable data transfer in next generation Multiple-Input Multiple-Output (MIMO) communication systems, terminals must be able to react to fluctuating channel conditions by having flexible modulation schemes and antenna configurations. This creates a challenging real-time implementation problem: to provide the high performance required of cutting edge MIMO standards, such as 802.11n, with the flexibility for this behavioural variability. FPGA softcore processors offer a solution to this problem, and in this paper we show how heterogeneous SISD/SIMD/MIMD architectures can enable programmable multicore architectures on FPGA with similar performance and cost as traditional dedicated circuit-based architectures. When applied to a 4×4 16-QAM Fixed-Complexity Sphere Decoder (FSD) detector we present the first soft-processor based solution for real-time 802.11n MIMO.
Resumo:
Adaptive Multiple-Input Multiple-Output (MIMO) systems achieve a much higher information rate than conventional fixed schemes due to their ability to adapt their configurations according to the wireless communications environment. However, current adaptive MIMO detection schemes exhibit either low performance (and hence low spectral efficiency) or huge computational
complexity. In particular, whilst deterministic Sphere Decoder (SD) detection schemes are well established for static MIMO systems, exhibiting deterministic parallel structure, low computational complexity and quasi-ML detection performance, there are no corresponding adaptive schemes. This paper solves
this problem, describing a hybrid tree based adaptive modulation detection scheme. Fixed Complexity Sphere Decoding (FSD) and Real-Values FSD (RFSD) are modified and combined into a hybrid scheme exploited at low and medium SNR to provide the highest possible information rate with quasi-ML Bit Error
Rate (BER) performance, while Reduced Complexity RFSD, BChase and Decision Feedback (DFE) schemes are exploited in the high SNR regions. This algorithm provides the facility to balance the detection complexity with BER performance with compatible information rate in dynamic, adaptive MIMO communications
environments.
Resumo:
This paper introduces some novel upper and lower bounds on the achievable sum rate of multiple-input multiple-output (MIMO) systems with zero-forcing (ZF) receivers. The presented bounds are not only tractable but also generic since they apply for different fading models of interest, such as uncorrelated/ correlated Rayleigh fading and Ricean fading. We further formulate a new relationship between the sum rate and the first negative moment of the unordered eigenvalue of the instantaneous correlation matrix. The derived expressions are explicitly compared with some existing results on MIMO systems operating with optimal and minimum mean-squared error (MMSE) receivers. Based on our analytical results, we gain valuable insights into the implications of the model parameters, such as the number of antennas, spatial correlation and Ricean-K factor, on the sum rate of MIMO ZF receivers. © 2011 IEEE.