51 resultados para CADMIUM MERCURY TELLURIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scots pine seedlings colonized by ectomycorrhizal (ECM) fungi from natural soil inoculum were exposed to a range of Cd or Zn concentrations to investigate the effects of metals on ECM fungi-Scots pine associations in a realistic soil environment. Experiments focused on the relationship between the sensitivity of ECM fungi and their host plants, the influence of metals on ECM community dynamics on Scots pine roots, and the effects of metal exposure on ECM colonization from soil-borne propagules. Ectomycorrhizal colonization was inhibited by Cd and Zn, with a decrease in the proportion of ECM-colonized root tips. Shoot and root biomass, total root length, and total root-tip density, however, were unaffected by Cd or Zn. A decrease in the diversity of ECM morphotypes also occurred, which could have a negative effect on tree vigor. Overall, colonization by ECM fungi was more sensitive than seedling growth to Cd and Zn, and this could have serious implications for successful tree establishment on metal-contaminated soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here we show that Hg(0) beads interact with soil or manganese oxide solids and x-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that after reacting with a composite soil, > 20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, > 700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and functional information encoded in DNA combined with unique properties of nanomaterials could be of use for the construction of novel biocomputational circuits and intelligent biomedical nanodevices. However, at present their practical applications are still limited by either low reproducibility of fabrication, modest sensitivity, or complicated handling procedures. Here, we demonstrate the construction of label-free and switchable molecular logic gates (AND, INHIBIT, and OR) that use specific conformation modulation of a guanine- and thymine-rich DNA, while the optical readout is enabled by the tunable metamaterials which serve as a substrate for surface enhanced Raman spectroscopy (MetaSERS). Our MetaSERS-based DNA logic is simple to operate, highly reproducible, and can be stimulated by ultra-low concentration of the external inputs, enabling an extremely sensitive detection of mercury ions down to 2×10-4 ppb, which is four orders of magnitude lower than the exposure limit allowed by United States Environmental Protection Agency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A substantial proportion of aetiological risks for many cancers and chronic diseases remain unexplained. Using geochemical soil and stream water samples collected as part of the Tellus Project studies, current research is investigating naturally occurring background levels of potentially toxic elements (PTEs) in soils and stream sediments and their possible relationship with progressive chronic kidney disease (CKD). The Tellus geological mapping project, Geological Survey Northern Ireland, collected soil sediment and stream water samples on a grid of one sample site every 2 km2 across the rural areas of Northern Ireland resulting in an excess of 6800 soil sampling locations and more than 5800 locations for stream water sampling. Accumulation of several PTEs including arsenic, cadmium, chromium, lead and mercury have been linked with human health and implicated in renal function decline. The hypothesis is that long-term exposure will result in cumulative exposure to PTEs and act as risk factor(s) for cancer and diabetes related CKD and its progression. The ‘bioavailable’ fraction of total PTE soil concentration depends on the ‘bioaccessible’ proportion through an exposure pathway. Recent work has explored this bioaccessible fraction for a range of PTEs across Northern Ireland. In this study the compositional nature of the multivariate geochemical PTE variables and bioaccessible data is explored to augment the investigation into the potential relationship between PTEs, bioaccessibility and disease data.