159 resultados para C-H CC O-O bond activation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantitative approach is used to understand the chain growth mechanism in FT synthesis on the Ru, Fe, Rh, and Re surfaces. The C-C coupling reactions are extensively calculated on the stepped metal surfaces. Combining the coupling barriers and reactant stabilities, we investigate the reaction rates of all possible C, + C-1 coupling pathways on the metal surfaces. It is found that (i) all the transition-state structures are similar on these surfaces, while some coupling barriers are very different; (ii) the dominant chain growth pathways on these surfaces are different: C + CH and CH + CH on Rh and Ru surfaces, C + CH3 on Fe surface, and C + CH on Re surface. The common features of the major coupling reactions together with those on the Co surface are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aerogels containing palladium metal nanoparticles were prepared using an ionic liquid route and tested for activity towards hydrogenation and Heck C-C coupling reactions. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic formation of N2O via a (NO)(2) intermediate was studied employing density functional theory with generalized gradient approximations. Dimer formation was not favored on Pt(111), in agreement with previous reports. On Pt(211) a variety of dimer structures were studied, including trans-(NO)(2) and cis-(NO)(2) configurations. A possible pathway involving (NO)(2) formation at the terrace near to a Pt step is identified as the possible mechanism for low-temperature N2O formation. The dimer is stabilized by bond formation between one O atom of the dimer and two Pt step atoms. The overall mechanism has a low barrier of approximately 0.32 eV. The mechanism is also put into the context of the overall NO+H-2 reaction. A consideration of the step-wise hydrogenation of O-(ads) from the step is also presented. Removal of O-(ads) from the step is significantly different from O-(ads) hydrogenation on Pt(111). The energetically favored structure at the transition state for OH(ads) formation has an activation energy of 0.63 eV. Further hydrogenation of OH(ads) has an activation energy of 0.80 eV. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic formation of N2O and NO2 were studied employing density functional theory with generalized gradient approximations, in order to investigate the microscopic reaction pathways of these catalytic processes on a Pt(111) surface. Transition states and reaction barriers for the addition of chemisorbed N or chemisorbed O to NO(ads) producing N2O and NO2, respectively, were calculated. The N2O transition state involves bond formation across the hcp hollow site with an associated reaction barrier of 1.78 eV. NO2 formation favors a fcc hollow site transition state with a barrier of 1.52 eV. The mechanisms for both reactions are compared to CO oxidation on the same surface. The activation of the chemisorbed NO and the chemisorbed N or O from the energetically stable initial state to the transition state are both significant contributors to the overall reaction barrier E-a, in contrast to CO oxidation in which the activation of the O-(ads) is much greater than CO(ads) activation. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the softening of CH vibrational frequencies and their implications for dehydrogenation of adsorbed hydrocarbons, an issue of scientific and technological importance, density functional theory calculations have been performed on the chemisorption and dehydrogenation of CH3 on Cu(111) and Pt(111) surfaces. By comparing these results with those of Ni(111) we find that the CH bonds of the adsorbate, when close enough, interact with metal atoms of the surface. It is this interaction and its associated lengthening and weakening of CH bonds that is the physical origin of mode softening. We rule out the possibility of a relationship between the mere presence of mode softening and dehydrogenation. We do show, however, that there is a clear relationship between the extent to which a surface can induce mode softening and the activation energy to dehydrogenation. In addition, periodic trends concerning the extent of mode softening are reproduced. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Explaining the uniqueness of the acquired somatic JAK2 V617F mutation, which is present in more than 95% of polycythemia vera patients, has been a challenge. The V617F mutation in the pseudokinase domain of JAK2 renders the unmutated kinase domain constitutively active. We have performed random mutagenesis at position 617 of JAK2 and tested each of the 20 possible amino acids for ability to induce constitutive signaling in Ba/F3 cells expressing the erythropoietin receptor. Four JAK2 mutants, V617W, V617M, V617I, and V617L, were able to induce cytokine independence and constitutive downstream signaling. Only V617W induced a level of constitutive activation comparable with V617F. Also, only V617W stabilized tyrosine-phosphorylated suppressor of cytokine signaling 3 ( SOCS3), a mechanism by which JAK2 V617F overcomes inhibition by SOCS3. The V617W mutant induced a myeloproliferative disease in mice, mainly characterized by erythrocytosis and megakaryocytic proliferation. Although JAK2 V617W would predictably be pathogenic in humans, the substitution of the Val codon, GTC, by TTG, the codon for Trp, would require three base pair changes, and thus it is unlikely to occur. We discuss how the predicted conformations of the activated JAK2 mutants can lead to better screening assays for novel small molecule inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFa and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NF?B was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1a,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1a,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1a,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1a,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.