49 resultados para Cólica abdominal
Resumo:
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera as well as somatosensory nerves innervating the chest wall, diaphragm and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychological methods for treatment of dystussia, is high and modern imaging methods have revealed potential neural substrates for some features of cough in the human.
Resumo:
Background: The association between body size and head and neck cancers (HNCA) is unclear, partly because of the biases in case–control studies. Methods: In the prospective NIH–AARP cohort study, 218,854 participants (132,288 men and 86,566 women), aged 50 to 71 years, were cancer free at baseline (1995 and 1996), and had valid anthropometric data. Cox proportional hazards regression was used to examine the associations between body size and HNCA, adjusted for current and past smoking habits, alcohol intake, education, race, and fruit and vegetable consumption, and reported as HR and 95% confidence intervals (CI). Results: Until December 31, 2006, 779 incident HNCAs occurred: 342 in the oral cavity, 120 in the oro- and hypopharynx, 265 in the larynx, 12 in the nasopharynx, and 40 at overlapping sites. There was an inverse association between HNCA and body mass index, which was almost exclusively among current smokers (HR = 0.76 per each 5 U increase; 95% CI, 0.63–0.93), and diminished as initial years of follow-up were excluded. We observed a direct association with waist-to-hip ratio (HR = 1.16 per 0.1 U increase; 95% CI, 1.03–1.31), particularly for cancers of the oral cavity (HR, 1.40; 95% CI, 1.17–1.67). Height was also directly associated with total HNCAs (P = 0.02), and oro- and hypopharyngeal cancers (P < 0.01). Conclusions: The risk of HNCAs was associated inversely with leanness among current smokers, and directly with abdominal obesity and height. Impact: Our study provides evidence that the association between leanness and risk of HNCAs may be due to effect modification by smoking. Cancer Epidemiol Biomarkers Prev; 23(11); 2422–9. ©2014 AACR.
Resumo:
All mammals lose their ability to produce lactase (β-galactosidase), the enzyme that cleaves lactose into galactose and glucose, after weaning. The prevalence of lactase deficiency (LD) spans from 2 to 15% among northern Europeans, to nearly 100% among Asians. Following lactose consumption, people with LD often experience gastrointestinal symptoms such as abdominal pain, bowel distension, cramps and flatulence, or even systemic problems such as headache, loss of concentration and muscle pain. These symptoms vary depending on the amount of lactose ingested, type of food and degree of intolerance. Although those affected can avoid the uptake of dairy products, in doing so, they lose a readily available source of calcium and protein. In this work, gels obtained by complexation of Tetronic 90R4 with α-cyclodextrin loaded with β-galactosidase are proposed as a way to administer the enzyme immediately before or with the lactose-containing meal. Both molecules are biocompatible, can form gels in situ, and show sustained erosion kinetics in aqueous media. The complex was characterized by FTIR that evidenced an inclusion complex between the polyethylene oxide block and α-cyclodextrin. The release profiles of β-galactosidase from two different matrices (gels and tablets) of the in situ hydrogels have been obtained. The influence of the percentage of Tetronic in media of different pH was evaluated. No differences were observed regarding the release rate from the gel matrices at pH 6 (t50 = 105 min). However, in the case of the tablets, the kinetics were faster and they released a greater amount of 90R4 (25%, t50 = 40–50 min). Also, the amount of enzyme released was higher for mixtures with 25% Tetronic. Using suitable mathematical models, the corresponding kinetic parameters have been calculated. In all cases, the release data fit quite well to the Peppas–Sahlin model equation, indicating that the release of β-galactosidase is governed by a combination of diffusion and erosion processes. It has been observed that the diffusion mechanism prevails over erosion during the first 50 minutes, followed by continued release of the enzyme due to the disintegration of the matrix.
Resumo:
Diet-induced obesity can induce low-level inflammation and insulin resistance. Interleukin-1β (IL-1β) is one of the key proinflammatory cytokines that contributes to the generation of insulin resistance and diabetes, but the mechanisms that regulate obesity-driven inflammation are ill defined. Here we found reduced expression of the E3 ubiquitin ligase Pellino3 in human abdominal adipose tissue from obese subjects and in adipose tissue of mice fed a high-fat diet and showing signs of insulin resistance. Pellino3-deficient mice demonstrated exacerbated high-fat-diet-induced inflammation, IL-1β expression, and insulin resistance. Mechanistically, Pellino3 negatively regulated TNF receptor associated 6 (TRAF6)-mediated ubiquitination and stabilization of hypoxia-inducible factor 1α (HIF1α), resulting in reduced HIF1α-induced expression of IL-1β. Our studies identify a regulatory mechanism controlling diet-induced insulin resistance by highlighting a critical role for Pellino3 in regulating IL-1β expression with implications for diseases like type 2 diabetes.